Reality check on Data Analytics jobs:
⟶ Most recruiters & employers are open to different backgrounds
⟶ The "essential skills" are usually a mix of hard and soft skills
Desired hard skills:
⟶ Excel - every job needs it
⟶ SQL - data retrieval and manipulation
⟶ Data Visualization - Tableau, Power BI, or Excel (Advanced)
⟶ Python - Basics, Numpy, Pandas, Matplotlib, Seaborn, Scikit-learn, etc
Desired soft skills:
⟶ Communication
⟶ Teamwork & Collaboration
⟶ Problem Solver
⟶ Critical Thinking
If you're lacking in some of the hard skills, start learning them through online courses or engaging in personal projects.
But don't forget to highlight your soft skills in your job application - they're equally important.
In short: Excel + SQL + Data Viz + Python + Communication + Teamwork + Problem Solver + Critical Thinking = Data Analytics
⟶ Most recruiters & employers are open to different backgrounds
⟶ The "essential skills" are usually a mix of hard and soft skills
Desired hard skills:
⟶ Excel - every job needs it
⟶ SQL - data retrieval and manipulation
⟶ Data Visualization - Tableau, Power BI, or Excel (Advanced)
⟶ Python - Basics, Numpy, Pandas, Matplotlib, Seaborn, Scikit-learn, etc
Desired soft skills:
⟶ Communication
⟶ Teamwork & Collaboration
⟶ Problem Solver
⟶ Critical Thinking
If you're lacking in some of the hard skills, start learning them through online courses or engaging in personal projects.
But don't forget to highlight your soft skills in your job application - they're equally important.
In short: Excel + SQL + Data Viz + Python + Communication + Teamwork + Problem Solver + Critical Thinking = Data Analytics
👍6
Python for Data Analysis: Must-Know Libraries 👇👇
Python is one of the most powerful tools for Data Analysts, and these libraries will supercharge your data analysis workflow by helping you clean, manipulate, and visualize data efficiently.
🔥 Essential Python Libraries for Data Analysis:
✅ Pandas – The go-to library for data manipulation. It helps in filtering, grouping, merging datasets, handling missing values, and transforming data into a structured format.
📌 Example: Loading a CSV file and displaying the first 5 rows:
✅ NumPy – Used for handling numerical data and performing complex calculations. It provides support for multi-dimensional arrays and efficient mathematical operations.
📌 Example: Creating an array and performing basic operations:
✅ Matplotlib & Seaborn – These are used for creating visualizations like line graphs, bar charts, and scatter plots to understand trends and patterns in data.
📌 Example: Creating a basic bar chart:
✅ Scikit-Learn – A must-learn library if you want to apply machine learning techniques like regression, classification, and clustering on your dataset.
✅ OpenPyXL – Helps in automating Excel reports using Python by reading, writing, and modifying Excel files.
💡 Challenge for You!
Try writing a Python script that:
1️⃣ Reads a CSV file
2️⃣ Cleans missing data
3️⃣ Creates a simple visualization
React with ♥️ if you want me to post the script for above challenge! ⬇️
Share with credits: https://t.me/sqlspecialist
Hope it helps :)
Python is one of the most powerful tools for Data Analysts, and these libraries will supercharge your data analysis workflow by helping you clean, manipulate, and visualize data efficiently.
🔥 Essential Python Libraries for Data Analysis:
✅ Pandas – The go-to library for data manipulation. It helps in filtering, grouping, merging datasets, handling missing values, and transforming data into a structured format.
📌 Example: Loading a CSV file and displaying the first 5 rows:
import pandas as pd df = pd.read_csv('data.csv') print(df.head())
✅ NumPy – Used for handling numerical data and performing complex calculations. It provides support for multi-dimensional arrays and efficient mathematical operations.
📌 Example: Creating an array and performing basic operations:
import numpy as np arr = np.array([10, 20, 30]) print(arr.mean()) # Calculates the average
✅ Matplotlib & Seaborn – These are used for creating visualizations like line graphs, bar charts, and scatter plots to understand trends and patterns in data.
📌 Example: Creating a basic bar chart:
import matplotlib.pyplot as plt plt.bar(['A', 'B', 'C'], [5, 7, 3]) plt.show()
✅ Scikit-Learn – A must-learn library if you want to apply machine learning techniques like regression, classification, and clustering on your dataset.
✅ OpenPyXL – Helps in automating Excel reports using Python by reading, writing, and modifying Excel files.
💡 Challenge for You!
Try writing a Python script that:
1️⃣ Reads a CSV file
2️⃣ Cleans missing data
3️⃣ Creates a simple visualization
React with ♥️ if you want me to post the script for above challenge! ⬇️
Share with credits: https://t.me/sqlspecialist
Hope it helps :)
👍4
Interview list for Data Analytics Roles
SQL Essentials:
- SELECT statements including WHERE, ORDER BY, GROUP BY, HAVING
- Basic JOINS: INNER, LEFT, RIGHT, FULL
- Aggregate functions: COUNT, SUM, AVG, MAX, MIN
- Subqueries, Common Table Expressions (WITH clause)
- CASE statements, advanced JOIN techniques, and Window functions (OVER, PARTITION BY, ROW_NUMBER, RANK)
Excel Proficiency:
- Cell operations, formulas (SUMIFS, COUNTIFS, AVERAGEIFS, LOOKUPS)
- PivotTables, PivotCharts, Data validation, What-if analysis
- Advanced formulas, Data Model & Power Pivot
Power BI Skills:
- Data modeling (importing data, managing relationships)
- Data transformation with Power Query, DAX for calculated columns/measures
- Creating interactive reports and dashboards, visualizations
Data Warehousing:
-Concepts of OLAP vs. OLTP
-Star and Snowflake schema designs
-ETL processes: Extract, Transform, Load
-Data lake vs. data warehouse
Cloud Computing for Data Analytics:
-Benefits of cloud services (AWS, Azure, Google Cloud)
-Data storage solutions: S3, Azure Blob Storage, Google Cloud Storage
-Cloud-based data analytics tools: BigQuery, Redshift, Snowflake
-Cost management and optimization strategies
Python Programming:
- Basic syntax, control structures, data structures (lists, dictionaries)
- Pandas & NumPy for data manipulation: DataFrames, Series, groupby
-plotting with Matplotlib, Seaborn for visualization
Statistics Fundamentals:
- Mean, Median, Mode, Standard Deviation, Variance
- Probability distributions, Hypothesis Testing, P-values
- Confidence Intervals, Correlation, Simple Linear Regression
I have curated top-notch Data Analytics Resources 👇👇
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02
Hope this helps you 😊
SQL Essentials:
- SELECT statements including WHERE, ORDER BY, GROUP BY, HAVING
- Basic JOINS: INNER, LEFT, RIGHT, FULL
- Aggregate functions: COUNT, SUM, AVG, MAX, MIN
- Subqueries, Common Table Expressions (WITH clause)
- CASE statements, advanced JOIN techniques, and Window functions (OVER, PARTITION BY, ROW_NUMBER, RANK)
Excel Proficiency:
- Cell operations, formulas (SUMIFS, COUNTIFS, AVERAGEIFS, LOOKUPS)
- PivotTables, PivotCharts, Data validation, What-if analysis
- Advanced formulas, Data Model & Power Pivot
Power BI Skills:
- Data modeling (importing data, managing relationships)
- Data transformation with Power Query, DAX for calculated columns/measures
- Creating interactive reports and dashboards, visualizations
Data Warehousing:
-Concepts of OLAP vs. OLTP
-Star and Snowflake schema designs
-ETL processes: Extract, Transform, Load
-Data lake vs. data warehouse
Cloud Computing for Data Analytics:
-Benefits of cloud services (AWS, Azure, Google Cloud)
-Data storage solutions: S3, Azure Blob Storage, Google Cloud Storage
-Cloud-based data analytics tools: BigQuery, Redshift, Snowflake
-Cost management and optimization strategies
Python Programming:
- Basic syntax, control structures, data structures (lists, dictionaries)
- Pandas & NumPy for data manipulation: DataFrames, Series, groupby
-plotting with Matplotlib, Seaborn for visualization
Statistics Fundamentals:
- Mean, Median, Mode, Standard Deviation, Variance
- Probability distributions, Hypothesis Testing, P-values
- Confidence Intervals, Correlation, Simple Linear Regression
I have curated top-notch Data Analytics Resources 👇👇
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02
Hope this helps you 😊
👍2❤1
𝟲 𝗙𝗿𝗲𝗲 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝘁𝗼 𝗠𝗮𝗸𝗲 𝗬𝗼𝘂𝗿 𝗥𝗲𝘀𝘂𝗺𝗲 𝗦𝘁𝗮𝗻𝗱 𝗢𝘂𝘁 𝗶𝗻 𝟮𝟬𝟮𝟱😍
As competition heats up across every industry, standing out to recruiters is more important than ever📄📌
The best part? You don’t need to spend a rupee to do it!💰
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/4m0nNOD
👉 Start learning. Start standing out✅️
As competition heats up across every industry, standing out to recruiters is more important than ever📄📌
The best part? You don’t need to spend a rupee to do it!💰
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/4m0nNOD
👉 Start learning. Start standing out✅️
👍1
Essential Python Libraries for Data Analytics 😄👇
1. NumPy:
- Efficient numerical operations and array manipulation.
2. Pandas:
- Data manipulation and analysis with powerful data structures (DataFrame, Series).
3. Matplotlib:
- 2D plotting library for creating visualizations.
4. Scikit-learn:
- Machine learning toolkit for classification, regression, clustering, etc.
5. TensorFlow:
- Open-source machine learning framework for building and deploying ML models.
6. PyTorch:
- Deep learning library, particularly popular for neural network research.
7. Django:
- High-level web framework for building robust, scalable web applications.
8. Flask:
- Lightweight web framework for building smaller web applications and APIs.
9. Requests:
- HTTP library for making HTTP requests.
10. Beautiful Soup:
- Web scraping library for pulling data out of HTML and XML files.
As a beginner, you can start with Pandas and Numpy libraries for data analysis. If you want to transition from Data Analyst to Data Scientist, then you can start applying ML libraries like Scikit-learn, Tensorflow, Pytorch, etc. in your data projects.
Share with credits: https://t.me/sqlspecialist
Hope it helps :)
1. NumPy:
- Efficient numerical operations and array manipulation.
2. Pandas:
- Data manipulation and analysis with powerful data structures (DataFrame, Series).
3. Matplotlib:
- 2D plotting library for creating visualizations.
4. Scikit-learn:
- Machine learning toolkit for classification, regression, clustering, etc.
5. TensorFlow:
- Open-source machine learning framework for building and deploying ML models.
6. PyTorch:
- Deep learning library, particularly popular for neural network research.
7. Django:
- High-level web framework for building robust, scalable web applications.
8. Flask:
- Lightweight web framework for building smaller web applications and APIs.
9. Requests:
- HTTP library for making HTTP requests.
10. Beautiful Soup:
- Web scraping library for pulling data out of HTML and XML files.
As a beginner, you can start with Pandas and Numpy libraries for data analysis. If you want to transition from Data Analyst to Data Scientist, then you can start applying ML libraries like Scikit-learn, Tensorflow, Pytorch, etc. in your data projects.
Share with credits: https://t.me/sqlspecialist
Hope it helps :)
Many people still aren't fully utilizing the power of Telegram.
There are numerous channels on Telegram that can help you find the latest job and internship opportunities?
Here are some of my top channel recommendations to help you get started 👇👇
Latest Jobs & Internships: https://t.me/getjobss
Jobs Preparation Resources:
https://t.me/jobinterviewsprep
Web Development Jobs:
https://t.me/webdeveloperjob
Data Science Jobs:
https://t.me/datasciencej
Interview Tips:
https://t.me/Interview_Jobs
Data Analyst Jobs:
https://t.me/jobs_SQL
AI Jobs:
https://t.me/AIjobz
Remote Jobs:
https://t.me/jobs_us_uk
FAANG Jobs:
https://t.me/FAANGJob
Software Developer Jobs: https://t.me/internshiptojobs
If you found this helpful, don’t forget to like, share, and follow for more resources that can boost your career journey!
Let me know if you know any other useful telegram channel
ENJOY LEARNING👍👍
There are numerous channels on Telegram that can help you find the latest job and internship opportunities?
Here are some of my top channel recommendations to help you get started 👇👇
Latest Jobs & Internships: https://t.me/getjobss
Jobs Preparation Resources:
https://t.me/jobinterviewsprep
Web Development Jobs:
https://t.me/webdeveloperjob
Data Science Jobs:
https://t.me/datasciencej
Interview Tips:
https://t.me/Interview_Jobs
Data Analyst Jobs:
https://t.me/jobs_SQL
AI Jobs:
https://t.me/AIjobz
Remote Jobs:
https://t.me/jobs_us_uk
FAANG Jobs:
https://t.me/FAANGJob
Software Developer Jobs: https://t.me/internshiptojobs
If you found this helpful, don’t forget to like, share, and follow for more resources that can boost your career journey!
Let me know if you know any other useful telegram channel
ENJOY LEARNING👍👍
👍5❤3
Guys, Big Announcement!
We’ve officially hit 5 Lakh followers on WhatsApp and it’s time to level up together! ❤️
I've launched a Python Learning Series — designed for beginners to those preparing for technical interviews or building real-world projects.
This will be a step-by-step journey — from basics to advanced — with real examples and short quizzes after each topic to help you lock in the concepts.
Here’s what we’ll cover in the coming days:
Week 1: Python Fundamentals
- Variables & Data Types
- Operators & Expressions
- Conditional Statements (if, elif, else)
- Loops (for, while)
- Functions & Parameters
- Input/Output & Basic Formatting
Week 2: Core Python Skills
- Lists, Tuples, Sets, Dictionaries
- String Manipulation
- List Comprehensions
- File Handling
- Exception Handling
Week 3: Intermediate Python
- Lambda Functions
- Map, Filter, Reduce
- Modules & Packages
- Scope & Global Variables
- Working with Dates & Time
Week 4: OOP & Pythonic Concepts
- Classes & Objects
- Inheritance & Polymorphism
- Decorators (Intro level)
- Generators & Iterators
- Writing Clean & Readable Code
Week 5: Real-World & Interview Prep
- Web Scraping (BeautifulSoup)
- Working with APIs (Requests)
- Automating Tasks
- Data Analysis Basics (Pandas)
- Interview Coding Patterns
You can join our WhatsApp channel to access it for free: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L/1527
We’ve officially hit 5 Lakh followers on WhatsApp and it’s time to level up together! ❤️
I've launched a Python Learning Series — designed for beginners to those preparing for technical interviews or building real-world projects.
This will be a step-by-step journey — from basics to advanced — with real examples and short quizzes after each topic to help you lock in the concepts.
Here’s what we’ll cover in the coming days:
Week 1: Python Fundamentals
- Variables & Data Types
- Operators & Expressions
- Conditional Statements (if, elif, else)
- Loops (for, while)
- Functions & Parameters
- Input/Output & Basic Formatting
Week 2: Core Python Skills
- Lists, Tuples, Sets, Dictionaries
- String Manipulation
- List Comprehensions
- File Handling
- Exception Handling
Week 3: Intermediate Python
- Lambda Functions
- Map, Filter, Reduce
- Modules & Packages
- Scope & Global Variables
- Working with Dates & Time
Week 4: OOP & Pythonic Concepts
- Classes & Objects
- Inheritance & Polymorphism
- Decorators (Intro level)
- Generators & Iterators
- Writing Clean & Readable Code
Week 5: Real-World & Interview Prep
- Web Scraping (BeautifulSoup)
- Working with APIs (Requests)
- Automating Tasks
- Data Analysis Basics (Pandas)
- Interview Coding Patterns
You can join our WhatsApp channel to access it for free: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L/1527
❤2👍1
𝗠𝗶𝗰𝗿𝗼𝘀𝗼𝗳𝘁’𝘀 𝗙𝗥𝗘𝗘 𝗣𝗼𝘄𝗲𝗿𝗕𝗜 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲😍
🚀 Want to Break into Data Analytics? Start with This Free Power BI Course by Microsoft🎯
If you’re trying to enter the field of data analytics but don’t know where to start, Microsoft has your back!💻📍
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/4jJvuaq
Best part? It’s completely free and created by one of the most trusted names in tech✅️
🚀 Want to Break into Data Analytics? Start with This Free Power BI Course by Microsoft🎯
If you’re trying to enter the field of data analytics but don’t know where to start, Microsoft has your back!💻📍
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/4jJvuaq
Best part? It’s completely free and created by one of the most trusted names in tech✅️
👍2
𝟯 𝗙𝗿𝗲𝗲 𝗧𝗖𝗦 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝗘𝘃𝗲𝗿𝘆 𝗙𝗿𝗲𝘀𝗵𝗲𝗿 𝗠𝘂𝘀𝘁 𝗧𝗮𝗸𝗲 𝘁𝗼 𝗚𝗲𝘁 𝗝𝗼𝗯-𝗥𝗲𝗮𝗱𝘆😍
🎯 If You’re a Fresher, These TCS Courses Are a Must-Do📄✔️
Stepping into the job market can be overwhelming—but what if you had certified, expert-backed training that actually prepares you?👨🎓✨️
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/42Nd9Do
Don’t wait. Get certified, get confident, and get closer to landing your first job✅️
🎯 If You’re a Fresher, These TCS Courses Are a Must-Do📄✔️
Stepping into the job market can be overwhelming—but what if you had certified, expert-backed training that actually prepares you?👨🎓✨️
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/42Nd9Do
Don’t wait. Get certified, get confident, and get closer to landing your first job✅️
Master SQL step-by-step! From basics to advanced, here are the key topics you need for a solid SQL foundation. 🚀
1. Foundations:
- Learn basic SQL syntax, including SELECT, FROM, WHERE clauses.
- Understand data types, constraints, and the basic structure of a database.
2. Database Design:
- Study database normalization to ensure efficient data organization.
- Learn about primary keys, foreign keys, and relationships between tables.
3. Queries and Joins:
- Practice writing simple to complex SELECT queries.
- Master different types of joins (INNER, LEFT, RIGHT, FULL) to combine data from multiple tables.
4. Aggregation and Grouping:
- Explore aggregate functions like COUNT, SUM, AVG, MAX, and MIN.
- Understand GROUP BY clause for summarizing data based on specific criteria.
5. Subqueries and Nested Queries:
- Learn how to use subqueries to perform operations within another query.
- Understand the concept of nested queries and their practical applications.
6. Indexing and Optimization:
- Study indexing for enhancing query performance.
- Learn optimization techniques, such as avoiding SELECT * and using appropriate indexes.
7. Transactions and ACID Properties:
- Understand the basics of transactions and their role in maintaining data integrity.
- Explore ACID properties (Atomicity, Consistency, Isolation, Durability) in database management.
8. Views and Stored Procedures:
- Create and use views to simplify complex queries.
- Learn about stored procedures for reusable and efficient query execution.
9. Security and Permissions:
- Understand SQL injection risks and how to prevent them.
- Learn how to manage user permissions and access control.
10. Advanced Topics:
- Explore advanced SQL concepts like window functions, CTEs (Common Table Expressions), and recursive queries.
- Familiarize yourself with database-specific features (e.g., PostgreSQL's JSON functions, MySQL's spatial data types).
11. Real-world Projects:
- Apply your knowledge to real-world scenarios by working on projects.
- Practice with sample databases or create your own to reinforce your skills.
12. Continuous Learning:
- Stay updated on SQL advancements and industry best practices.
- Engage with online communities, forums, and resources for ongoing learning and problem-solving.
Here are some free resources to learn & practice SQL 👇👇
Udacity free course- https://imp.i115008.net/AoAg7K
SQL For Data Analysis: https://t.me/sqlanalyst
For Practice- https://stratascratch.com/?via=free
SQL Learning Series: https://t.me/sqlspecialist/567
Top 10 SQL Projects with Datasets: https://t.me/DataPortfolio/16
Join for more free resources: https://t.me/free4unow_backup
ENJOY LEARNING 👍👍
1. Foundations:
- Learn basic SQL syntax, including SELECT, FROM, WHERE clauses.
- Understand data types, constraints, and the basic structure of a database.
2. Database Design:
- Study database normalization to ensure efficient data organization.
- Learn about primary keys, foreign keys, and relationships between tables.
3. Queries and Joins:
- Practice writing simple to complex SELECT queries.
- Master different types of joins (INNER, LEFT, RIGHT, FULL) to combine data from multiple tables.
4. Aggregation and Grouping:
- Explore aggregate functions like COUNT, SUM, AVG, MAX, and MIN.
- Understand GROUP BY clause for summarizing data based on specific criteria.
5. Subqueries and Nested Queries:
- Learn how to use subqueries to perform operations within another query.
- Understand the concept of nested queries and their practical applications.
6. Indexing and Optimization:
- Study indexing for enhancing query performance.
- Learn optimization techniques, such as avoiding SELECT * and using appropriate indexes.
7. Transactions and ACID Properties:
- Understand the basics of transactions and their role in maintaining data integrity.
- Explore ACID properties (Atomicity, Consistency, Isolation, Durability) in database management.
8. Views and Stored Procedures:
- Create and use views to simplify complex queries.
- Learn about stored procedures for reusable and efficient query execution.
9. Security and Permissions:
- Understand SQL injection risks and how to prevent them.
- Learn how to manage user permissions and access control.
10. Advanced Topics:
- Explore advanced SQL concepts like window functions, CTEs (Common Table Expressions), and recursive queries.
- Familiarize yourself with database-specific features (e.g., PostgreSQL's JSON functions, MySQL's spatial data types).
11. Real-world Projects:
- Apply your knowledge to real-world scenarios by working on projects.
- Practice with sample databases or create your own to reinforce your skills.
12. Continuous Learning:
- Stay updated on SQL advancements and industry best practices.
- Engage with online communities, forums, and resources for ongoing learning and problem-solving.
Here are some free resources to learn & practice SQL 👇👇
Udacity free course- https://imp.i115008.net/AoAg7K
SQL For Data Analysis: https://t.me/sqlanalyst
For Practice- https://stratascratch.com/?via=free
SQL Learning Series: https://t.me/sqlspecialist/567
Top 10 SQL Projects with Datasets: https://t.me/DataPortfolio/16
Join for more free resources: https://t.me/free4unow_backup
ENJOY LEARNING 👍👍
👍3
𝟭𝟬𝟬% 𝗙𝗿𝗲𝗲 𝗔𝗪𝗦 𝗥𝗲𝘀𝗼𝘂𝗿𝗰𝗲𝘀 𝗳𝗼𝗿 𝗔𝗯𝘀𝗼𝗹𝘂𝘁𝗲 𝗕𝗲𝗴𝗶𝗻𝗻𝗲𝗿𝘀😍
☁️ Want to Break Into Cloud Computing? Start Your AWS Journey for Free!📌
Cloud computing is one of the fastest-growing and highest-paying fields in tech. And Amazon Web Services (AWS) leads the way with over 30% of the global market share📊🎊
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/3Skm0pM
Click below and start your cloud adventure today✅️
☁️ Want to Break Into Cloud Computing? Start Your AWS Journey for Free!📌
Cloud computing is one of the fastest-growing and highest-paying fields in tech. And Amazon Web Services (AWS) leads the way with over 30% of the global market share📊🎊
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/3Skm0pM
Click below and start your cloud adventure today✅️
Here are some of the amazing Websites to Learn Python from Beginning to Advanced. 👇👇
1. LearnPython
🔗 Playlist Link
2. W3Schools
🔗 Playlist Link
3. Khan Academy
🔗 Playlist Link
4. FreeCodeCamp
🔗 Playlist Link
5. Sololearn
🔗 Playlist Link
1. LearnPython
🔗 Playlist Link
2. W3Schools
🔗 Playlist Link
3. Khan Academy
🔗 Playlist Link
4. FreeCodeCamp
🔗 Playlist Link
5. Sololearn
🔗 Playlist Link
Best python github Repositories very helpful for beginners -
1. scikit-learn : https://github.com/scikit-learn
2. Flask : https://github.com/pallets/flask
3. Keras : https://github.com/keras-team/keras
4. Sentry : https://github.com/getsentry/sentry
5. Django : https://github.com/django/django
6. Ansible : https://github.com/ansible/ansible
7. Tornado : https://github.com/tornadoweb/tornado
1. scikit-learn : https://github.com/scikit-learn
2. Flask : https://github.com/pallets/flask
3. Keras : https://github.com/keras-team/keras
4. Sentry : https://github.com/getsentry/sentry
5. Django : https://github.com/django/django
6. Ansible : https://github.com/ansible/ansible
7. Tornado : https://github.com/tornadoweb/tornado
GitHub
scikit-learn
Repositories related to the scikit-learn Python machine learning library. - scikit-learn
𝟱 𝗙𝗿𝗲𝗲 𝗠𝗶𝗰𝗿𝗼𝘀𝗼𝗳𝘁 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝗰𝗲 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝗬𝗼𝘂 𝗖𝗮𝗻’𝘁 𝗠𝗶𝘀𝘀😍
Microsoft Learn is offering 5 must-do courses for aspiring data scientists, absolutely free🔥📊
These self-paced learning modules are designed by industry experts and cover everything from Python and ML to Microsoft Fabric and Azure🎯
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/4iSWjaP
Job-ready content that gets you results✅️
Microsoft Learn is offering 5 must-do courses for aspiring data scientists, absolutely free🔥📊
These self-paced learning modules are designed by industry experts and cover everything from Python and ML to Microsoft Fabric and Azure🎯
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/4iSWjaP
Job-ready content that gets you results✅️
For data analysts working with Python, mastering these top 10 concepts is essential:
1. Data Structures: Understand fundamental data structures like lists, dictionaries, tuples, and sets, as well as libraries like NumPy and Pandas for more advanced data manipulation.
2. Data Cleaning and Preprocessing: Learn techniques for cleaning and preprocessing data, including handling missing values, removing duplicates, and standardizing data formats.
3. Exploratory Data Analysis (EDA): Use libraries like Pandas, Matplotlib, and Seaborn to perform EDA, visualize data distributions, identify patterns, and explore relationships between variables.
4. Data Visualization: Master visualization libraries such as Matplotlib, Seaborn, and Plotly to create various plots and charts for effective data communication and storytelling.
5. Statistical Analysis: Gain proficiency in statistical concepts and methods for analyzing data distributions, conducting hypothesis tests, and deriving insights from data.
6. Machine Learning Basics: Familiarize yourself with machine learning algorithms and techniques for regression, classification, clustering, and dimensionality reduction using libraries like Scikit-learn.
7. Data Manipulation with Pandas: Learn advanced data manipulation techniques using Pandas, including merging, grouping, pivoting, and reshaping datasets.
8. Data Wrangling with Regular Expressions: Understand how to use regular expressions (regex) in Python to extract, clean, and manipulate text data efficiently.
9. SQL and Database Integration: Acquire basic SQL skills for querying databases directly from Python using libraries like SQLAlchemy or integrating with databases such as SQLite or MySQL.
10. Web Scraping and API Integration: Explore methods for retrieving data from websites using web scraping libraries like BeautifulSoup or interacting with APIs to access and analyze data from various sources.
Give credits while sharing: https://t.me/pythonanalyst
ENJOY LEARNING 👍👍
1. Data Structures: Understand fundamental data structures like lists, dictionaries, tuples, and sets, as well as libraries like NumPy and Pandas for more advanced data manipulation.
2. Data Cleaning and Preprocessing: Learn techniques for cleaning and preprocessing data, including handling missing values, removing duplicates, and standardizing data formats.
3. Exploratory Data Analysis (EDA): Use libraries like Pandas, Matplotlib, and Seaborn to perform EDA, visualize data distributions, identify patterns, and explore relationships between variables.
4. Data Visualization: Master visualization libraries such as Matplotlib, Seaborn, and Plotly to create various plots and charts for effective data communication and storytelling.
5. Statistical Analysis: Gain proficiency in statistical concepts and methods for analyzing data distributions, conducting hypothesis tests, and deriving insights from data.
6. Machine Learning Basics: Familiarize yourself with machine learning algorithms and techniques for regression, classification, clustering, and dimensionality reduction using libraries like Scikit-learn.
7. Data Manipulation with Pandas: Learn advanced data manipulation techniques using Pandas, including merging, grouping, pivoting, and reshaping datasets.
8. Data Wrangling with Regular Expressions: Understand how to use regular expressions (regex) in Python to extract, clean, and manipulate text data efficiently.
9. SQL and Database Integration: Acquire basic SQL skills for querying databases directly from Python using libraries like SQLAlchemy or integrating with databases such as SQLite or MySQL.
10. Web Scraping and API Integration: Explore methods for retrieving data from websites using web scraping libraries like BeautifulSoup or interacting with APIs to access and analyze data from various sources.
Give credits while sharing: https://t.me/pythonanalyst
ENJOY LEARNING 👍👍
❤2👍2
𝗙𝗥𝗘𝗘 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝗧𝗼 𝗨𝗽𝗴𝗿𝗮𝗱𝗲 𝗬𝗼𝘂𝗿 𝗦𝗸𝗶𝗹𝗹𝘀 𝗜𝗻 𝟮𝟬𝟮𝟱😍
Explore top-notch courses to build expertise in cloud computing, data analysis, and visualization—all for FREE!
1. Microsoft Azure Fundamentals
2. Power BI Data Analyst Associate
3. Azure Enterprise Data Analyst Associate
4. Introduction to Data Analysis Using Excel (edX)
5. Analyzing & Visualizing Data with Excel (edX)
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/3Phz4Li
Start learning today and transform your career! 🚀
Explore top-notch courses to build expertise in cloud computing, data analysis, and visualization—all for FREE!
1. Microsoft Azure Fundamentals
2. Power BI Data Analyst Associate
3. Azure Enterprise Data Analyst Associate
4. Introduction to Data Analysis Using Excel (edX)
5. Analyzing & Visualizing Data with Excel (edX)
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/3Phz4Li
Start learning today and transform your career! 🚀
❤1