Python for Data Analysts
49.7K subscribers
490 photos
66 files
309 links
Find top Python resources from global universities, cool projects, and learning materials for data analytics.

For promotions: @coderfun

Useful links: heylink.me/DataAnalytics
Download Telegram
Important Pandas Methods for Machine Learning
โค7
๐Ÿ’ป Python Programming Roadmap

๐Ÿ”น Stage 1: Python Basics (Syntax, Variables, Data Types) 
๐Ÿ”น Stage 2: Control Flow (if/else, loops) 
๐Ÿ”น Stage 3: Functions & Modules 
๐Ÿ”น Stage 4: Data Structures (Lists, Tuples, Sets, Dicts) 
๐Ÿ”น Stage 5: File Handling (Read/Write, CSV, JSON) 
๐Ÿ”น Stage 6: Error Handling (try/except, custom exceptions) 
๐Ÿ”น Stage 7: Object-Oriented Programming (Classes, Inheritance) 
๐Ÿ”น Stage 8: Standard Libraries (os, datetime, math) 
๐Ÿ”น Stage 9: Virtual Environments & pip package management 
๐Ÿ”น Stage 10: Working with APIs (Requests, JSON data) 
๐Ÿ”น Stage 11: Web Development Basics (Flask/Django) 
๐Ÿ”น Stage 12: Databases (SQLite, PostgreSQL, SQLAlchemy ORM) 
๐Ÿ”น Stage 13: Testing (unittest, pytest frameworks) 
๐Ÿ”น Stage 14: Version Control with Git & GitHub 
๐Ÿ”น Stage 15: Package Development (setup.py, publishing on PyPI) 
๐Ÿ”น Stage 16: Data Analysis (Pandas, NumPy libraries) 
๐Ÿ”น Stage 17: Data Visualization (Matplotlib, Seaborn) 
๐Ÿ”น Stage 18: Web Scraping (BeautifulSoup, Selenium) 
๐Ÿ”น Stage 19: Automation & Scripting projects 
๐Ÿ”น Stage 20: Advanced Topics (AsyncIO, Type Hints, Design Patterns)

๐Ÿ’ก Tip: Master one stage before moving to the next. Build mini-projects to solidify your learning.

You can find detailed explanation here: ๐Ÿ‘‡ https://whatsapp.com/channel/0029VbBDoisBvvscrno41d1l

Double Tap โ™ฅ๏ธ For More โœ…
โค10
โœ… How Much Python is Enough to Crack a Data Analyst Interview? ๐Ÿ๐Ÿ“Š

Python is a must-have for data analyst roles in 2025โ€”interviewers expect you to handle data cleaning, analysis, and basic viz with it. You don't need to be an expert in ML or advanced scripting; focus on practical skills to process and interpret data efficiently. Based on current trends, here's what gets you interview-ready:

๐Ÿ“Œ Basic Syntax & Data Types
โฆ Variables, strings, integers, floats
โฆ Lists, tuples, dictionaries, sets

๐Ÿ” Conditions & Loops
โฆ if, elif, else
โฆ for and while loops

๐Ÿงฐ Functions & Scope
โฆ def, parameters, return values
โฆ Lambda functions, *args, **kwargs

๐Ÿ“ฆ Pandas Foundation
โฆ DataFrame, Series
โฆ read_csv(), head(), info(), describe()
โฆ Filtering, sorting, indexing

๐Ÿงฎ Data Analysis
โฆ groupby(), agg(), pivot_table()
โฆ Handling missing values: isnull(), fillna()
โฆ Duplicates & outliers

๐Ÿ“Š Visualization
โฆ matplotlib.pyplot & seaborn
โฆ Line, bar, scatter, histogram
โฆ Styling and labeling charts

๐Ÿ—ƒ๏ธ Working with Files
โฆ Reading/writing CSV, Excel
โฆ JSON basics
โฆ Using with open() for text files

๐Ÿ“… Date & Time
โฆ datetime, pd.to_datetime()
โฆ Extracting day, month, year
โฆ Time-based filtering

โœ… Must-Have Strengths:
โฆ Writing clean, readable Python code
โฆ Analyzing DataFrames confidently
โฆ Explaining logic behind analysis
โฆ Connecting analysis to business goals

Aim for 2-3 months of consistent practice (20-30 hours/week) on platforms like DataCamp or LeetCode. Pair it with SQL and Excel for a strong edgeโ€”many jobs test Python via coding challenges on datasets.

Python Resources: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L 

๐Ÿ’ฌ Tap โค๏ธ for more!
โค8๐Ÿ‘2๐Ÿ‘1๐Ÿฅฐ1
Python for Data Analysts
Pandas Cheatsheet .pdf
๐Ÿš€ Pandas Cheatsheet โ€“ Master Data Analysis Like a Pro! ๐Ÿ“Š