๐ป Python Programming Roadmap
๐น Stage 1: Python Basics (Syntax, Variables, Data Types)
๐น Stage 2: Control Flow (if/else, loops)
๐น Stage 3: Functions & Modules
๐น Stage 4: Data Structures (Lists, Tuples, Sets, Dicts)
๐น Stage 5: File Handling (Read/Write, CSV, JSON)
๐น Stage 6: Error Handling (try/except, custom exceptions)
๐น Stage 7: Object-Oriented Programming (Classes, Inheritance)
๐น Stage 8: Standard Libraries (os, datetime, math)
๐น Stage 9: Virtual Environments & pip package management
๐น Stage 10: Working with APIs (Requests, JSON data)
๐น Stage 11: Web Development Basics (Flask/Django)
๐น Stage 12: Databases (SQLite, PostgreSQL, SQLAlchemy ORM)
๐น Stage 13: Testing (unittest, pytest frameworks)
๐น Stage 14: Version Control with Git & GitHub
๐น Stage 15: Package Development (setup.py, publishing on PyPI)
๐น Stage 16: Data Analysis (Pandas, NumPy libraries)
๐น Stage 17: Data Visualization (Matplotlib, Seaborn)
๐น Stage 18: Web Scraping (BeautifulSoup, Selenium)
๐น Stage 19: Automation & Scripting projects
๐น Stage 20: Advanced Topics (AsyncIO, Type Hints, Design Patterns)
๐ก Tip: Master one stage before moving to the next. Build mini-projects to solidify your learning.
You can find detailed explanation here: ๐ https://whatsapp.com/channel/0029VbBDoisBvvscrno41d1l
Double Tap โฅ๏ธ For More โ
๐น Stage 1: Python Basics (Syntax, Variables, Data Types)
๐น Stage 2: Control Flow (if/else, loops)
๐น Stage 3: Functions & Modules
๐น Stage 4: Data Structures (Lists, Tuples, Sets, Dicts)
๐น Stage 5: File Handling (Read/Write, CSV, JSON)
๐น Stage 6: Error Handling (try/except, custom exceptions)
๐น Stage 7: Object-Oriented Programming (Classes, Inheritance)
๐น Stage 8: Standard Libraries (os, datetime, math)
๐น Stage 9: Virtual Environments & pip package management
๐น Stage 10: Working with APIs (Requests, JSON data)
๐น Stage 11: Web Development Basics (Flask/Django)
๐น Stage 12: Databases (SQLite, PostgreSQL, SQLAlchemy ORM)
๐น Stage 13: Testing (unittest, pytest frameworks)
๐น Stage 14: Version Control with Git & GitHub
๐น Stage 15: Package Development (setup.py, publishing on PyPI)
๐น Stage 16: Data Analysis (Pandas, NumPy libraries)
๐น Stage 17: Data Visualization (Matplotlib, Seaborn)
๐น Stage 18: Web Scraping (BeautifulSoup, Selenium)
๐น Stage 19: Automation & Scripting projects
๐น Stage 20: Advanced Topics (AsyncIO, Type Hints, Design Patterns)
๐ก Tip: Master one stage before moving to the next. Build mini-projects to solidify your learning.
You can find detailed explanation here: ๐ https://whatsapp.com/channel/0029VbBDoisBvvscrno41d1l
Double Tap โฅ๏ธ For More โ
โค10
โ
How Much Python is Enough to Crack a Data Analyst Interview? ๐๐
Python is a must-have for data analyst roles in 2025โinterviewers expect you to handle data cleaning, analysis, and basic viz with it. You don't need to be an expert in ML or advanced scripting; focus on practical skills to process and interpret data efficiently. Based on current trends, here's what gets you interview-ready:
๐ Basic Syntax & Data Types
โฆ Variables, strings, integers, floats
โฆ Lists, tuples, dictionaries, sets
๐ Conditions & Loops
โฆ if, elif, else
โฆ for and while loops
๐งฐ Functions & Scope
โฆ def, parameters, return values
โฆ Lambda functions, *args, **kwargs
๐ฆ Pandas Foundation
โฆ DataFrame, Series
โฆ read_csv(), head(), info(), describe()
โฆ Filtering, sorting, indexing
๐งฎ Data Analysis
โฆ groupby(), agg(), pivot_table()
โฆ Handling missing values: isnull(), fillna()
โฆ Duplicates & outliers
๐ Visualization
โฆ matplotlib.pyplot & seaborn
โฆ Line, bar, scatter, histogram
โฆ Styling and labeling charts
๐๏ธ Working with Files
โฆ Reading/writing CSV, Excel
โฆ JSON basics
โฆ Using with open() for text files
๐ Date & Time
โฆ datetime, pd.to_datetime()
โฆ Extracting day, month, year
โฆ Time-based filtering
โ Must-Have Strengths:
โฆ Writing clean, readable Python code
โฆ Analyzing DataFrames confidently
โฆ Explaining logic behind analysis
โฆ Connecting analysis to business goals
Aim for 2-3 months of consistent practice (20-30 hours/week) on platforms like DataCamp or LeetCode. Pair it with SQL and Excel for a strong edgeโmany jobs test Python via coding challenges on datasets.
Python Resources: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
๐ฌ Tap โค๏ธ for more!
Python is a must-have for data analyst roles in 2025โinterviewers expect you to handle data cleaning, analysis, and basic viz with it. You don't need to be an expert in ML or advanced scripting; focus on practical skills to process and interpret data efficiently. Based on current trends, here's what gets you interview-ready:
๐ Basic Syntax & Data Types
โฆ Variables, strings, integers, floats
โฆ Lists, tuples, dictionaries, sets
๐ Conditions & Loops
โฆ if, elif, else
โฆ for and while loops
๐งฐ Functions & Scope
โฆ def, parameters, return values
โฆ Lambda functions, *args, **kwargs
๐ฆ Pandas Foundation
โฆ DataFrame, Series
โฆ read_csv(), head(), info(), describe()
โฆ Filtering, sorting, indexing
๐งฎ Data Analysis
โฆ groupby(), agg(), pivot_table()
โฆ Handling missing values: isnull(), fillna()
โฆ Duplicates & outliers
๐ Visualization
โฆ matplotlib.pyplot & seaborn
โฆ Line, bar, scatter, histogram
โฆ Styling and labeling charts
๐๏ธ Working with Files
โฆ Reading/writing CSV, Excel
โฆ JSON basics
โฆ Using with open() for text files
๐ Date & Time
โฆ datetime, pd.to_datetime()
โฆ Extracting day, month, year
โฆ Time-based filtering
โ Must-Have Strengths:
โฆ Writing clean, readable Python code
โฆ Analyzing DataFrames confidently
โฆ Explaining logic behind analysis
โฆ Connecting analysis to business goals
Aim for 2-3 months of consistent practice (20-30 hours/week) on platforms like DataCamp or LeetCode. Pair it with SQL and Excel for a strong edgeโmany jobs test Python via coding challenges on datasets.
Python Resources: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
๐ฌ Tap โค๏ธ for more!
โค8๐2๐1๐ฅฐ1
Python for Data Analysts
Pandas Cheatsheet .pdf
๐ Pandas Cheatsheet โ Master Data Analysis Like a Pro! ๐