Python for Data Analysts
49.7K subscribers
490 photos
66 files
309 links
Find top Python resources from global universities, cool projects, and learning materials for data analytics.

For promotions: @coderfun

Useful links: heylink.me/DataAnalytics
Download Telegram
🚀 AI Journey Contest 2025: Test your AI skills!

Join our international online AI competition. Register now for the contest! Award fund — RUB 6.5 mln!

Choose your track:

· 🤖 Agent-as-Judge — build a universal “judge” to evaluate AI-generated texts.

· 🧠 Human-centered AI Assistant — develop a personalized assistant based on GigaChat that mimics human behavior and anticipates preferences. Participants will receive API tokens and a chance to get an additional 1M tokens.

· 💾 GigaMemory — design a long-term memory mechanism for LLMs so the assistant can remember and use important facts in dialogue.

Why Join
Level up your skills, add a strong line to your resume, tackle pro-level tasks, compete for an award, and get an opportunity to showcase your work at AI Journey, a leading international AI conference.

How to Join
1. Register here.
2. Choose your track.
3. Create your solution and submit it by 30 October 2025.

🚀 Ready for a challenge? Join a global developer community and show your AI skills!
5
Python Checklist for Data Analysts 🧠

1. Python Basics 
   Variables, data types (int, float, str, bool) 
   Control flow: if-else, loops (for, while) 
   Functions and lambda expressions 
   List, dict, tuple, set basics

2. Data Handling & Manipulation 
   NumPy: arrays, vectorized operations, broadcasting 
   Pandas: Series & DataFrame, reading/writing CSV, Excel 
   Data inspection: head(), info(), describe() 
   Filtering, sorting, grouping (groupby), merging/joining datasets 
   Handling missing data (isnull(), fillna(), dropna())

3. Data Visualization 
   Matplotlib basics: plots, histograms, scatter plots 
   Seaborn: statistical visualizations (heatmaps, boxplots) 
   Plotly (optional): interactive charts

4. Statistics & Probability 
   Descriptive stats (mean, median, std) 
   Probability distributions, hypothesis testing (SciPy, statsmodels) 
   Correlation, covariance

5. Working with APIs & Data Sources 
   Fetching data via APIs (requests library) 
   Reading JSON, XML 
   Web scraping basics (BeautifulSoup, Scrapy)

6. Automation & Scripting 
   Automate repetitive data tasks using loops, functions 
   Excel automation (openpyxl, xlrd
   File handling and regular expressions

7. Machine Learning Basics (Optional starting point) 
   Scikit-learn for basic models (regression, classification) 
   Train-test split, evaluation metrics

8. Version Control & Collaboration 
   Git basics: init, commit, push, pull 
   Sharing notebooks or scripts via GitHub

9. Environment & Tools 
   Jupyter Notebook / JupyterLab for interactive analysis 
   Python IDEs (VSCode, PyCharm) 
   Virtual environments (venv, conda)

10. Projects & Portfolio 
    Analyze real datasets (Kaggle, UCI) 
    Document insights in notebooks or blogs 
    Showcase code & analysis on GitHub

💡 Tips:
⦁ Practice coding daily with mini-projects and challenges
⦁ Use interactive platforms like Kaggle, DataCamp, or LeetCode (Python)
⦁ Combine SQL + Python skills for powerful data querying & analysis

Python Programming Resources: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L

Double Tap ♥️ For More
6
Important Pandas Methods for Machine Learning
7
💻 Python Programming Roadmap

🔹 Stage 1: Python Basics (Syntax, Variables, Data Types) 
🔹 Stage 2: Control Flow (if/else, loops) 
🔹 Stage 3: Functions & Modules 
🔹 Stage 4: Data Structures (Lists, Tuples, Sets, Dicts) 
🔹 Stage 5: File Handling (Read/Write, CSV, JSON) 
🔹 Stage 6: Error Handling (try/except, custom exceptions) 
🔹 Stage 7: Object-Oriented Programming (Classes, Inheritance) 
🔹 Stage 8: Standard Libraries (os, datetime, math) 
🔹 Stage 9: Virtual Environments & pip package management 
🔹 Stage 10: Working with APIs (Requests, JSON data) 
🔹 Stage 11: Web Development Basics (Flask/Django) 
🔹 Stage 12: Databases (SQLite, PostgreSQL, SQLAlchemy ORM) 
🔹 Stage 13: Testing (unittest, pytest frameworks) 
🔹 Stage 14: Version Control with Git & GitHub 
🔹 Stage 15: Package Development (setup.py, publishing on PyPI) 
🔹 Stage 16: Data Analysis (Pandas, NumPy libraries) 
🔹 Stage 17: Data Visualization (Matplotlib, Seaborn) 
🔹 Stage 18: Web Scraping (BeautifulSoup, Selenium) 
🔹 Stage 19: Automation & Scripting projects 
🔹 Stage 20: Advanced Topics (AsyncIO, Type Hints, Design Patterns)

💡 Tip: Master one stage before moving to the next. Build mini-projects to solidify your learning.

You can find detailed explanation here: 👇 https://whatsapp.com/channel/0029VbBDoisBvvscrno41d1l

Double Tap ♥️ For More
10
How Much Python is Enough to Crack a Data Analyst Interview? 🐍📊

Python is a must-have for data analyst roles in 2025—interviewers expect you to handle data cleaning, analysis, and basic viz with it. You don't need to be an expert in ML or advanced scripting; focus on practical skills to process and interpret data efficiently. Based on current trends, here's what gets you interview-ready:

📌 Basic Syntax & Data Types
⦁ Variables, strings, integers, floats
⦁ Lists, tuples, dictionaries, sets

🔁 Conditions & Loops
⦁ if, elif, else
⦁ for and while loops

🧰 Functions & Scope
⦁ def, parameters, return values
⦁ Lambda functions, *args, **kwargs

📦 Pandas Foundation
⦁ DataFrame, Series
⦁ read_csv(), head(), info(), describe()
⦁ Filtering, sorting, indexing

🧮 Data Analysis
⦁ groupby(), agg(), pivot_table()
⦁ Handling missing values: isnull(), fillna()
⦁ Duplicates & outliers

📊 Visualization
⦁ matplotlib.pyplot & seaborn
⦁ Line, bar, scatter, histogram
⦁ Styling and labeling charts

🗃️ Working with Files
⦁ Reading/writing CSV, Excel
⦁ JSON basics
⦁ Using with open() for text files

📅 Date & Time
⦁ datetime, pd.to_datetime()
⦁ Extracting day, month, year
⦁ Time-based filtering

Must-Have Strengths:
⦁ Writing clean, readable Python code
⦁ Analyzing DataFrames confidently
⦁ Explaining logic behind analysis
⦁ Connecting analysis to business goals

Aim for 2-3 months of consistent practice (20-30 hours/week) on platforms like DataCamp or LeetCode. Pair it with SQL and Excel for a strong edge—many jobs test Python via coding challenges on datasets.

Python Resources: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L 

💬 Tap ❤️ for more!
8👏2👍1🥰1
Python for Data Analysts
Pandas Cheatsheet .pdf
🚀 Pandas Cheatsheet – Master Data Analysis Like a Pro! 📊