Python for Data Analysts
47.7K subscribers
492 photos
64 files
318 links
Find top Python resources from global universities, cool projects, and learning materials for data analytics.

For promotions: @coderfun

Useful links: heylink.me/DataAnalytics
Download Telegram
Complete roadmap to learn Python for data analysis

Step 1: Fundamentals of Python

1. Basics of Python Programming
- Introduction to Python
- Data types (integers, floats, strings, booleans)
- Variables and constants
- Basic operators (arithmetic, comparison, logical)

2. Control Structures
- Conditional statements (if, elif, else)
- Loops (for, while)
- List comprehensions

3. Functions and Modules
- Defining functions
- Function arguments and return values
- Importing modules
- Built-in functions vs. user-defined functions

4. Data Structures
- Lists, tuples, sets, dictionaries
- Manipulating data structures (add, remove, update elements)

Step 2: Advanced Python
1. File Handling
- Reading from and writing to files
- Working with different file formats (txt, csv, json)

2. Error Handling
- Try, except blocks
- Handling exceptions and errors gracefully

3. Object-Oriented Programming (OOP)
- Classes and objects
- Inheritance and polymorphism
- Encapsulation

Step 3: Libraries for Data Analysis
1. NumPy
- Understanding arrays and array operations
- Indexing, slicing, and iterating
- Mathematical functions and statistical operations

2. Pandas
- Series and DataFrames
- Reading and writing data (csv, excel, sql, json)
- Data cleaning and preparation
- Merging, joining, and concatenating data
- Grouping and aggregating data

3. Matplotlib and Seaborn
- Data visualization with Matplotlib
- Plotting different types of graphs (line, bar, scatter, histogram)
- Customizing plots
- Advanced visualizations with Seaborn

Step 4: Data Manipulation and Analysis
1. Data Wrangling
- Handling missing values
- Data transformation
- Feature engineering

2. Exploratory Data Analysis (EDA)
- Descriptive statistics
- Data visualization techniques
- Identifying patterns and outliers

3. Statistical Analysis
- Hypothesis testing
- Correlation and regression analysis
- Probability distributions

Step 5: Advanced Topics
1. Time Series Analysis
- Working with datetime objects
- Time series decomposition
- Forecasting models

2. Machine Learning Basics
- Introduction to machine learning
- Supervised vs. unsupervised learning
- Using Scikit-Learn for machine learning
- Building and evaluating models

3. Big Data and Cloud Computing
- Introduction to big data frameworks (e.g., Hadoop, Spark)
- Using cloud services for data analysis (e.g., AWS, Google Cloud)

Step 6: Practical Projects
1. Hands-on Projects
- Analyzing datasets from Kaggle
- Building interactive dashboards with Plotly or Dash
- Developing end-to-end data analysis projects

2. Collaborative Projects
- Participating in data science competitions
- Contributing to open-source projects

👨‍💻 FREE Resources to Learn & Practice Python 

1. https://www.freecodecamp.org/learn/data-analysis-with-python/#data-analysis-with-python-course
2. https://www.hackerrank.com/domains/python
3. https://www.hackerearth.com/practice/python/getting-started/numbers/practice-problems/
4. https://t.me/PythonInterviews
5. https://www.w3schools.com/python/python_exercises.asp
6. https://t.me/pythonfreebootcamp/134
7. https://t.me/pythonanalyst
8. https://pythonbasics.org/exercises/
9. https://t.me/pythondevelopersindia/300
10. https://www.geeksforgeeks.org/python-programming-language/learn-python-tutorial
11. https://t.me/pythonspecialist/33

Join @free4unow_backup for more free resources

ENJOY LEARNING 👍👍
4
Must-know Pandas Functions for Data Analysis
7
These are top 5 data structures and algorithms projects, allowing you to dive deep into the world of DSA 💪🏻

•Project 1: Snakes Game (Arrays)

The Snakes Game project is a classic implementation of the popular game
Snake.

This project allows you to understand the concepts of arrays, loops, and conditional statements. You can further enhance the game by incorporating additional features such as score tracking and power-ups.

•Project 2: Cash Flow Minimizer (Graphs/ Multisets/Heaps)

The Cash Flow Minimizer project involves solving a cash flow optimization problem using graphs, multisets, and heaps. Given a set of transactions among a group of people, the objective is to minimize the total number of transactions required to settle all debts

•Project 3: Sudoku Solver (Backtracking)

The Sudoku Solver project aims to solve the popular Sudoku puzzle using backtracking. This project allows you to understand the backtracking algorithm, which is widely used in solving constraint satisfaction problems.

•Project 4: File Zipper (Greedy Huffman
Encoder)

The File Zipper project focuses on implementing a file compression utility using the Greedy Huffman encoding algorithm. This project provides a practical application of the greedy algorithm and helps you understand the trade-offs between
compression ratio and execution time.

•Project 5: Map Navigator (Dijkstra’s
Algorithm)

The Map Navigator project aims to develop a navigation system using Dijkstra’s algorithm. It involves finding the shortest path between two locations on a map, considering factors such as distance and traffic.

You can check these amazing resources for DSA Preparation

Join for more: https://t.me/crackingthecodinginterview

All the best 👍👍
4
Guys, Big Announcement!

We’ve officially hit 2.5 Million followers — and it’s time to level up together! ❤️

I’m launching a Python Projects Series — designed for beginners to those preparing for technical interviews or building real-world projects.

This will be a step-by-step, hands-on journey — where you’ll build useful Python projects with clear code, explanations, and mini-quizzes!

Here’s what we’ll cover:

🔹 Week 1: Python Mini Projects (Daily Practice)
⦁ Calculator
⦁ To-Do List (CLI)
⦁ Number Guessing Game
⦁ Unit Converter
⦁ Digital Clock

🔹 Week 2: Data Handling & APIs
⦁ Read/Write CSV & Excel files
⦁ JSON parsing
⦁ API Calls using Requests
⦁ Weather App using OpenWeather API
⦁ Currency Converter using Real-time API

🔹 Week 3: Automation with Python
⦁ File Organizer Script
⦁ Email Sender
⦁ WhatsApp Automation
⦁ PDF Merger
⦁ Excel Report Generator

🔹 Week 4: Data Analysis with Pandas & Matplotlib
⦁ Load & Clean CSV
⦁ Data Aggregation
⦁ Data Visualization
⦁ Trend Analysis
⦁ Dashboard Basics

🔹 Week 5: AI & ML Projects (Beginner Friendly)
⦁ Predict House Prices
⦁ Email Spam Classifier
⦁ Sentiment Analysis
⦁ Image Classification (Intro)
⦁ Basic Chatbot

📌 Each project includes: 
Problem Statement 
Code with explanation 
Sample input/output 
Learning outcome 
Mini quiz

💬 React ❤️ if you're ready to build some projects together!

You can access it for free here
👇👇
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L

Let’s Build. Let’s Grow. 💻🙌
13
Pandas Cheatsheet 👆
4
🔰 Python Toolkit for Data Analysis
5
Step-by-step guide to become a Data Analyst in 2025📊

1. Learn the Fundamentals:
Start with Excel, basic statistics, and data visualization concepts.

2. Pick Up Key Tools & Languages:
Master SQL, Python (or R), and data visualization tools like Tableau or Power BI.

3. Get Formal Education or Certification:
A bachelor’s degree in a relevant field (like Computer Science, Math, or Economics) helps, but you can also do online courses or certifications in data analytics.

4. Build Hands-on Experience:
Work on real-world projects—use Kaggle datasets, internships, or freelance gigs to practice data cleaning, analysis, and visualization.

5. Create a Portfolio:
Showcase your projects on GitHub or a personal website. Include dashboards, reports, and code samples.

6. Develop Soft Skills:
Focus on communication, problem-solving, teamwork, and attention to detail—these are just as important as technical skills.

7. Apply for Entry-Level Jobs:
Look for roles like “Junior Data Analyst” or “Business Analyst.” Tailor your resume to highlight your skills and portfolio.

8. Keep Learning:
Stay updated with new tools (like AI-driven analytics), trends, and advanced topics such as machine learning or domain-specific analytics.

React ❤️ for more
5
𝟳 𝗠𝘂𝘀𝘁-𝗛𝗮𝘃𝗲 𝗦𝗸𝗶𝗹𝗹𝘀 𝘁𝗼 𝗟𝗮𝗻𝗱 𝗮 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 𝗖𝗮𝗿𝗲𝗲𝗿 𝗶𝗻 𝟮𝟬𝟮𝟱😍

Want to land a career in data analytics? 📊💥

It’s not about stacking degrees anymore—it’s about mastering in-demand skills that make you stand out in a competitive job market🧑‍💻📌

𝐋𝐢𝐧𝐤👇:-

http://pdlink.in/3Uxh5TR

Start small, practice every day, and add these skills to your portfolio✅️
2