Python for Data Analysts
48.8K subscribers
481 photos
65 files
302 links
Find top Python resources from global universities, cool projects, and learning materials for data analytics.

For promotions: @coderfun

Useful links: heylink.me/DataAnalytics
Download Telegram
Is Python Really Essential for Data Analysis as a Fresher?

Starting out in data analysis can be overwhelming, especially when everyone seems to say Python is a must-have. But hereโ€™s a fresherโ€™s reality check: Python is not always required at the start!

๐Ÿ’ก Why You Donโ€™t Need to Worry About Python Right Away:
1๏ธโƒฃ Excel, Power BI and SQL First! - Many entry-level roles prioritize skills in Excel and SQL. These tools alone can handle a lot of data tasks like cleaning, aggregating, and visualizing data.
2๏ธโƒฃ Gradual Learning Path ๐Ÿ“ˆ - Once youโ€™re comfortable with the basics, Python is a powerful next step, especially for handling larger datasets or automating processes.
3๏ธโƒฃ Value in Flexibility - Pythonโ€™s libraries like Pandas and Matplotlib allow for more complex analysis, but theyโ€™re skills you can learn over time as you grow in your role.

๐Ÿ”‘ Takeaway? Start with whatโ€™s essentialโ€”Excel, Power BI and SQLโ€”and build your Python skills as you gain more experience.
๐Ÿ‘6โค2๐Ÿฅฐ1
Pandas basics to advanced.pdf
854.6 KB
Pandas basics to advanced.pdf
โค12๐Ÿ‘8
Python for Web3 and Smart Contracts Roadmap

Stage 1 โ€“ Python Basics (Syntax, OOP)
Stage 2 โ€“ Blockchain Fundamentals (Transactions, Ledgers)
Stage 3 โ€“ Web3(.)py and Ethereum Basics
Stage 4 โ€“ Smart Contracts with Solidity
Stage 5 โ€“ Decentralized Storage (IPFS)
Stage 6 โ€“ Integrate Wallets and MetaMask
Stage 7 โ€“ Decentralized Application (DApp) Development
Stage 8 โ€“ Deploy and Test Smart Contracts

๐Ÿ† โ€“ Python Web3 Developer
๐Ÿ‘10โค2
๐Ÿ‘20
โค10๐Ÿ‘8
โค3๐Ÿ‘1
TOP 10 Python Concepts for Job Interview

1. Reading data from file/table
2. Writing data to file/table
3. Data Types
4. Function
5. Data Preprocessing (numpy/pandas)
6. Data Visualisation (Matplotlib/seaborn/bokeh)
7. Machine Learning (sklearn)
8. Deep Learning (Tensorflow/Keras/PyTorch)
9. Distributed Processing (PySpark)
10. Functional and Object Oriented Programming
๐Ÿ‘7โค5๐Ÿฅฐ4
๐Ÿ‘8โค3
โŒจ๏ธ Data Types In NumPy
๐Ÿ‘19๐Ÿฅฐ4โค1
Many people pay too much to learn Python, but my mission is to break down barriers. I have shared complete learning series to learn Python from scratch.

Here are the links to the Python series

Complete Python Topics for Data Analyst: https://t.me/sqlspecialist/548

Part-1: https://t.me/sqlspecialist/562

Part-2: https://t.me/sqlspecialist/564

Part-3: https://t.me/sqlspecialist/565

Part-4: https://t.me/sqlspecialist/566

Part-5: https://t.me/sqlspecialist/568

Part-6: https://t.me/sqlspecialist/570

Part-7: https://t.me/sqlspecialist/571

Part-8: https://t.me/sqlspecialist/572

Part-9: https://t.me/sqlspecialist/578

Part-10: https://t.me/sqlspecialist/577

Part-11: https://t.me/sqlspecialist/578

Part-12:
https://t.me/sqlspecialist/581

Part-13: https://t.me/sqlspecialist/583

Part-14: https://t.me/sqlspecialist/584

Part-15: https://t.me/sqlspecialist/585

I saw a lot of big influencers copy pasting my content after removing the credits. It's absolutely fine for me as more people are getting free education because of my content.

But I will really appreciate if you share credits for the time and efforts I put in to create such valuable content. I hope you can understand.

You can refer these amazing resources for Python Interview Preparation.

Complete SQL Topics for Data Analysts: https://t.me/sqlspecialist/523

Complete Power BI Topics for Data Analysts: https://t.me/sqlspecialist/588

I'll continue with learning series on Excel & Tableau.

Thanks to all who support our channel and share the content with proper credits. You guys are really amazing.

Hope it helps :)
๐Ÿ‘15โค8๐Ÿ‘2
โŒจ๏ธ Top 10 Data Libraries for Python
๐Ÿ‘19โค4
Don't Confuse to learn Python.

Learn This Concept to be proficient in Python.

๐—•๐—ฎ๐˜€๐—ถ๐—ฐ๐˜€ ๐—ผ๐—ณ ๐—ฃ๐˜†๐˜๐—ต๐—ผ๐—ป:
- Python Syntax
- Data Types
- Variables
- Operators
- Control Structures:
if-elif-else
Loops
Break and Continue
try-except block
- Functions
- Modules and Packages

๐—ข๐—ฏ๐—ท๐—ฒ๐—ฐ๐˜-๐—ข๐—ฟ๐—ถ๐—ฒ๐—ป๐˜๐—ฒ๐—ฑ ๐—ฃ๐—ฟ๐—ผ๐—ด๐—ฟ๐—ฎ๐—บ๐—บ๐—ถ๐—ป๐—ด ๐—ถ๐—ป ๐—ฃ๐˜†๐˜๐—ต๐—ผ๐—ป:
- Classes and Objects
- Inheritance
- Polymorphism
- Encapsulation
- Abstraction

๐—ฃ๐˜†๐˜๐—ต๐—ผ๐—ป ๐—Ÿ๐—ถ๐—ฏ๐—ฟ๐—ฎ๐—ฟ๐—ถ๐—ฒ๐˜€:
- Pandas
- Numpy

๐—ฃ๐—ฎ๐—ป๐—ฑ๐—ฎ๐˜€:
- What is Pandas?
- Installing Pandas
- Importing Pandas
- Pandas Data Structures (Series, DataFrame, Index)

๐—ช๐—ผ๐—ฟ๐—ธ๐—ถ๐—ป๐—ด ๐˜„๐—ถ๐˜๐—ต ๐——๐—ฎ๐˜๐—ฎ๐—™๐—ฟ๐—ฎ๐—บ๐—ฒ๐˜€:
- Creating DataFrames
- Accessing Data in DataFrames
- Filtering and Selecting Data
- Adding and Removing Columns
- Merging and Joining DataFrames
- Grouping and Aggregating Data
- Pivot Tables

๐——๐—ฎ๐˜๐—ฎ ๐—–๐—น๐—ฒ๐—ฎ๐—ป๐—ถ๐—ป๐—ด ๐—ฎ๐—ป๐—ฑ ๐—ฃ๐—ฟ๐—ฒ๐—ฝ๐—ฎ๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป:
- Handling Missing Values
- Handling Duplicates
- Data Formatting
- Data Transformation
- Data Normalization

๐—”๐—ฑ๐˜ƒ๐—ฎ๐—ป๐—ฐ๐—ฒ๐—ฑ ๐—ง๐—ผ๐—ฝ๐—ถ๐—ฐ๐˜€:
- Handling Large Datasets with Dask
- Handling Categorical Data with Pandas
- Handling Text Data with Pandas
- Using Pandas with Scikit-learn
- Performance Optimization with Pandas

๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐˜๐—ฟ๐˜‚๐—ฐ๐˜๐˜‚๐—ฟ๐—ฒ๐˜€ ๐—ถ๐—ป ๐—ฃ๐˜†๐˜๐—ต๐—ผ๐—ป:
- Lists
- Tuples
- Dictionaries
- Sets

๐—™๐—ถ๐—น๐—ฒ ๐—›๐—ฎ๐—ป๐—ฑ๐—น๐—ถ๐—ป๐—ด ๐—ถ๐—ป ๐—ฃ๐˜†๐˜๐—ต๐—ผ๐—ป:
- Reading and Writing Text Files
- Reading and Writing Binary Files
- Working with CSV Files
- Working with JSON Files

๐—ก๐˜‚๐—บ๐—ฝ๐˜†:
- What is NumPy?
- Installing NumPy
- Importing NumPy
- NumPy Arrays

๐—ก๐˜‚๐—บ๐—ฃ๐˜† ๐—”๐—ฟ๐—ฟ๐—ฎ๐˜† ๐—ข๐—ฝ๐—ฒ๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€:
- Creating Arrays
- Accessing Array Elements
- Slicing and Indexing
- Reshaping Arrays
- Combining Arrays
- Splitting Arrays
- Arithmetic Operations
- Broadcasting

๐—ช๐—ผ๐—ฟ๐—ธ๐—ถ๐—ป๐—ด ๐˜„๐—ถ๐˜๐—ต ๐——๐—ฎ๐˜๐—ฎ ๐—ถ๐—ป ๐—ก๐˜‚๐—บ๐—ฃ๐˜†:
- Reading and Writing Data with NumPy
- Filtering and Sorting Data
- Data Manipulation with NumPy
- Interpolation
- Fourier Transforms
- Window Functions

๐—ฃ๐—ฒ๐—ฟ๐—ณ๐—ผ๐—ฟ๐—บ๐—ฎ๐—ป๐—ฐ๐—ฒ ๐—ข๐—ฝ๐˜๐—ถ๐—บ๐—ถ๐˜‡๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐˜„๐—ถ๐˜๐—ต ๐—ก๐˜‚๐—บ๐—ฃ๐˜†:
- Vectorization
- Memory Management
- Multithreading and Multiprocessing
- Parallel Computing
๐Ÿ‘16โค8