Is Python Really Essential for Data Analysis as a Fresher?
Starting out in data analysis can be overwhelming, especially when everyone seems to say Python is a must-have. But hereโs a fresherโs reality check: Python is not always required at the start!
๐ก Why You Donโt Need to Worry About Python Right Away:
1๏ธโฃ Excel, Power BI and SQL First! - Many entry-level roles prioritize skills in Excel and SQL. These tools alone can handle a lot of data tasks like cleaning, aggregating, and visualizing data.
2๏ธโฃ Gradual Learning Path ๐ - Once youโre comfortable with the basics, Python is a powerful next step, especially for handling larger datasets or automating processes.
3๏ธโฃ Value in Flexibility - Pythonโs libraries like Pandas and Matplotlib allow for more complex analysis, but theyโre skills you can learn over time as you grow in your role.
๐ Takeaway? Start with whatโs essentialโExcel, Power BI and SQLโand build your Python skills as you gain more experience.
Starting out in data analysis can be overwhelming, especially when everyone seems to say Python is a must-have. But hereโs a fresherโs reality check: Python is not always required at the start!
๐ก Why You Donโt Need to Worry About Python Right Away:
1๏ธโฃ Excel, Power BI and SQL First! - Many entry-level roles prioritize skills in Excel and SQL. These tools alone can handle a lot of data tasks like cleaning, aggregating, and visualizing data.
2๏ธโฃ Gradual Learning Path ๐ - Once youโre comfortable with the basics, Python is a powerful next step, especially for handling larger datasets or automating processes.
3๏ธโฃ Value in Flexibility - Pythonโs libraries like Pandas and Matplotlib allow for more complex analysis, but theyโre skills you can learn over time as you grow in your role.
๐ Takeaway? Start with whatโs essentialโExcel, Power BI and SQLโand build your Python skills as you gain more experience.
๐6โค2๐ฅฐ1
Python for Web3 and Smart Contracts Roadmap
Stage 1 โ Python Basics (Syntax, OOP)
Stage 2 โ Blockchain Fundamentals (Transactions, Ledgers)
Stage 3 โ Web3(.)py and Ethereum Basics
Stage 4 โ Smart Contracts with Solidity
Stage 5 โ Decentralized Storage (IPFS)
Stage 6 โ Integrate Wallets and MetaMask
Stage 7 โ Decentralized Application (DApp) Development
Stage 8 โ Deploy and Test Smart Contracts
๐ โ Python Web3 Developer
Stage 1 โ Python Basics (Syntax, OOP)
Stage 2 โ Blockchain Fundamentals (Transactions, Ledgers)
Stage 3 โ Web3(.)py and Ethereum Basics
Stage 4 โ Smart Contracts with Solidity
Stage 5 โ Decentralized Storage (IPFS)
Stage 6 โ Integrate Wallets and MetaMask
Stage 7 โ Decentralized Application (DApp) Development
Stage 8 โ Deploy and Test Smart Contracts
๐ โ Python Web3 Developer
๐10โค2
TOP 10 Python Concepts for Job Interview
1. Reading data from file/table
2. Writing data to file/table
3. Data Types
4. Function
5. Data Preprocessing (numpy/pandas)
6. Data Visualisation (Matplotlib/seaborn/bokeh)
7. Machine Learning (sklearn)
8. Deep Learning (Tensorflow/Keras/PyTorch)
9. Distributed Processing (PySpark)
10. Functional and Object Oriented Programming
1. Reading data from file/table
2. Writing data to file/table
3. Data Types
4. Function
5. Data Preprocessing (numpy/pandas)
6. Data Visualisation (Matplotlib/seaborn/bokeh)
7. Machine Learning (sklearn)
8. Deep Learning (Tensorflow/Keras/PyTorch)
9. Distributed Processing (PySpark)
10. Functional and Object Oriented Programming
๐7โค5๐ฅฐ4
2 Years of Python Experience in one article ๐๐
https://medium.com/@data_analyst/2-years-of-python-experience-in-one-article-71e855c143f3?sk=16e4684a4caea308f6cd08bca0a7dfde
https://medium.com/@data_analyst/2-years-of-python-experience-in-one-article-71e855c143f3?sk=16e4684a4caea308f6cd08bca0a7dfde
Medium
2 Years of Python Experience in one article
Python, Data Science, Machine Learning, Data Analytics, Programming
๐9โค3
Many people pay too much to learn Python, but my mission is to break down barriers. I have shared complete learning series to learn Python from scratch.
Here are the links to the Python series
Complete Python Topics for Data Analyst: https://t.me/sqlspecialist/548
Part-1: https://t.me/sqlspecialist/562
Part-2: https://t.me/sqlspecialist/564
Part-3: https://t.me/sqlspecialist/565
Part-4: https://t.me/sqlspecialist/566
Part-5: https://t.me/sqlspecialist/568
Part-6: https://t.me/sqlspecialist/570
Part-7: https://t.me/sqlspecialist/571
Part-8: https://t.me/sqlspecialist/572
Part-9: https://t.me/sqlspecialist/578
Part-10: https://t.me/sqlspecialist/577
Part-11: https://t.me/sqlspecialist/578
Part-12:
https://t.me/sqlspecialist/581
Part-13: https://t.me/sqlspecialist/583
Part-14: https://t.me/sqlspecialist/584
Part-15: https://t.me/sqlspecialist/585
I saw a lot of big influencers copy pasting my content after removing the credits. It's absolutely fine for me as more people are getting free education because of my content.
But I will really appreciate if you share credits for the time and efforts I put in to create such valuable content. I hope you can understand.
You can refer these amazing resources for Python Interview Preparation.
Complete SQL Topics for Data Analysts: https://t.me/sqlspecialist/523
Complete Power BI Topics for Data Analysts: https://t.me/sqlspecialist/588
I'll continue with learning series on Excel & Tableau.
Thanks to all who support our channel and share the content with proper credits. You guys are really amazing.
Hope it helps :)
Here are the links to the Python series
Complete Python Topics for Data Analyst: https://t.me/sqlspecialist/548
Part-1: https://t.me/sqlspecialist/562
Part-2: https://t.me/sqlspecialist/564
Part-3: https://t.me/sqlspecialist/565
Part-4: https://t.me/sqlspecialist/566
Part-5: https://t.me/sqlspecialist/568
Part-6: https://t.me/sqlspecialist/570
Part-7: https://t.me/sqlspecialist/571
Part-8: https://t.me/sqlspecialist/572
Part-9: https://t.me/sqlspecialist/578
Part-10: https://t.me/sqlspecialist/577
Part-11: https://t.me/sqlspecialist/578
Part-12:
https://t.me/sqlspecialist/581
Part-13: https://t.me/sqlspecialist/583
Part-14: https://t.me/sqlspecialist/584
Part-15: https://t.me/sqlspecialist/585
I saw a lot of big influencers copy pasting my content after removing the credits. It's absolutely fine for me as more people are getting free education because of my content.
But I will really appreciate if you share credits for the time and efforts I put in to create such valuable content. I hope you can understand.
You can refer these amazing resources for Python Interview Preparation.
Complete SQL Topics for Data Analysts: https://t.me/sqlspecialist/523
Complete Power BI Topics for Data Analysts: https://t.me/sqlspecialist/588
I'll continue with learning series on Excel & Tableau.
Thanks to all who support our channel and share the content with proper credits. You guys are really amazing.
Hope it helps :)
๐15โค8๐2
Don't Confuse to learn Python.
Learn This Concept to be proficient in Python.
๐๐ฎ๐๐ถ๐ฐ๐ ๐ผ๐ณ ๐ฃ๐๐๐ต๐ผ๐ป:
- Python Syntax
- Data Types
- Variables
- Operators
- Control Structures:
if-elif-else
Loops
Break and Continue
try-except block
- Functions
- Modules and Packages
๐ข๐ฏ๐ท๐ฒ๐ฐ๐-๐ข๐ฟ๐ถ๐ฒ๐ป๐๐ฒ๐ฑ ๐ฃ๐ฟ๐ผ๐ด๐ฟ๐ฎ๐บ๐บ๐ถ๐ป๐ด ๐ถ๐ป ๐ฃ๐๐๐ต๐ผ๐ป:
- Classes and Objects
- Inheritance
- Polymorphism
- Encapsulation
- Abstraction
๐ฃ๐๐๐ต๐ผ๐ป ๐๐ถ๐ฏ๐ฟ๐ฎ๐ฟ๐ถ๐ฒ๐:
- Pandas
- Numpy
๐ฃ๐ฎ๐ป๐ฑ๐ฎ๐:
- What is Pandas?
- Installing Pandas
- Importing Pandas
- Pandas Data Structures (Series, DataFrame, Index)
๐ช๐ผ๐ฟ๐ธ๐ถ๐ป๐ด ๐๐ถ๐๐ต ๐๐ฎ๐๐ฎ๐๐ฟ๐ฎ๐บ๐ฒ๐:
- Creating DataFrames
- Accessing Data in DataFrames
- Filtering and Selecting Data
- Adding and Removing Columns
- Merging and Joining DataFrames
- Grouping and Aggregating Data
- Pivot Tables
๐๐ฎ๐๐ฎ ๐๐น๐ฒ๐ฎ๐ป๐ถ๐ป๐ด ๐ฎ๐ป๐ฑ ๐ฃ๐ฟ๐ฒ๐ฝ๐ฎ๐ฟ๐ฎ๐๐ถ๐ผ๐ป:
- Handling Missing Values
- Handling Duplicates
- Data Formatting
- Data Transformation
- Data Normalization
๐๐ฑ๐๐ฎ๐ป๐ฐ๐ฒ๐ฑ ๐ง๐ผ๐ฝ๐ถ๐ฐ๐:
- Handling Large Datasets with Dask
- Handling Categorical Data with Pandas
- Handling Text Data with Pandas
- Using Pandas with Scikit-learn
- Performance Optimization with Pandas
๐๐ฎ๐๐ฎ ๐ฆ๐๐ฟ๐๐ฐ๐๐๐ฟ๐ฒ๐ ๐ถ๐ป ๐ฃ๐๐๐ต๐ผ๐ป:
- Lists
- Tuples
- Dictionaries
- Sets
๐๐ถ๐น๐ฒ ๐๐ฎ๐ป๐ฑ๐น๐ถ๐ป๐ด ๐ถ๐ป ๐ฃ๐๐๐ต๐ผ๐ป:
- Reading and Writing Text Files
- Reading and Writing Binary Files
- Working with CSV Files
- Working with JSON Files
๐ก๐๐บ๐ฝ๐:
- What is NumPy?
- Installing NumPy
- Importing NumPy
- NumPy Arrays
๐ก๐๐บ๐ฃ๐ ๐๐ฟ๐ฟ๐ฎ๐ ๐ข๐ฝ๐ฒ๐ฟ๐ฎ๐๐ถ๐ผ๐ป๐:
- Creating Arrays
- Accessing Array Elements
- Slicing and Indexing
- Reshaping Arrays
- Combining Arrays
- Splitting Arrays
- Arithmetic Operations
- Broadcasting
๐ช๐ผ๐ฟ๐ธ๐ถ๐ป๐ด ๐๐ถ๐๐ต ๐๐ฎ๐๐ฎ ๐ถ๐ป ๐ก๐๐บ๐ฃ๐:
- Reading and Writing Data with NumPy
- Filtering and Sorting Data
- Data Manipulation with NumPy
- Interpolation
- Fourier Transforms
- Window Functions
๐ฃ๐ฒ๐ฟ๐ณ๐ผ๐ฟ๐บ๐ฎ๐ป๐ฐ๐ฒ ๐ข๐ฝ๐๐ถ๐บ๐ถ๐๐ฎ๐๐ถ๐ผ๐ป ๐๐ถ๐๐ต ๐ก๐๐บ๐ฃ๐:
- Vectorization
- Memory Management
- Multithreading and Multiprocessing
- Parallel Computing
Learn This Concept to be proficient in Python.
๐๐ฎ๐๐ถ๐ฐ๐ ๐ผ๐ณ ๐ฃ๐๐๐ต๐ผ๐ป:
- Python Syntax
- Data Types
- Variables
- Operators
- Control Structures:
if-elif-else
Loops
Break and Continue
try-except block
- Functions
- Modules and Packages
๐ข๐ฏ๐ท๐ฒ๐ฐ๐-๐ข๐ฟ๐ถ๐ฒ๐ป๐๐ฒ๐ฑ ๐ฃ๐ฟ๐ผ๐ด๐ฟ๐ฎ๐บ๐บ๐ถ๐ป๐ด ๐ถ๐ป ๐ฃ๐๐๐ต๐ผ๐ป:
- Classes and Objects
- Inheritance
- Polymorphism
- Encapsulation
- Abstraction
๐ฃ๐๐๐ต๐ผ๐ป ๐๐ถ๐ฏ๐ฟ๐ฎ๐ฟ๐ถ๐ฒ๐:
- Pandas
- Numpy
๐ฃ๐ฎ๐ป๐ฑ๐ฎ๐:
- What is Pandas?
- Installing Pandas
- Importing Pandas
- Pandas Data Structures (Series, DataFrame, Index)
๐ช๐ผ๐ฟ๐ธ๐ถ๐ป๐ด ๐๐ถ๐๐ต ๐๐ฎ๐๐ฎ๐๐ฟ๐ฎ๐บ๐ฒ๐:
- Creating DataFrames
- Accessing Data in DataFrames
- Filtering and Selecting Data
- Adding and Removing Columns
- Merging and Joining DataFrames
- Grouping and Aggregating Data
- Pivot Tables
๐๐ฎ๐๐ฎ ๐๐น๐ฒ๐ฎ๐ป๐ถ๐ป๐ด ๐ฎ๐ป๐ฑ ๐ฃ๐ฟ๐ฒ๐ฝ๐ฎ๐ฟ๐ฎ๐๐ถ๐ผ๐ป:
- Handling Missing Values
- Handling Duplicates
- Data Formatting
- Data Transformation
- Data Normalization
๐๐ฑ๐๐ฎ๐ป๐ฐ๐ฒ๐ฑ ๐ง๐ผ๐ฝ๐ถ๐ฐ๐:
- Handling Large Datasets with Dask
- Handling Categorical Data with Pandas
- Handling Text Data with Pandas
- Using Pandas with Scikit-learn
- Performance Optimization with Pandas
๐๐ฎ๐๐ฎ ๐ฆ๐๐ฟ๐๐ฐ๐๐๐ฟ๐ฒ๐ ๐ถ๐ป ๐ฃ๐๐๐ต๐ผ๐ป:
- Lists
- Tuples
- Dictionaries
- Sets
๐๐ถ๐น๐ฒ ๐๐ฎ๐ป๐ฑ๐น๐ถ๐ป๐ด ๐ถ๐ป ๐ฃ๐๐๐ต๐ผ๐ป:
- Reading and Writing Text Files
- Reading and Writing Binary Files
- Working with CSV Files
- Working with JSON Files
๐ก๐๐บ๐ฝ๐:
- What is NumPy?
- Installing NumPy
- Importing NumPy
- NumPy Arrays
๐ก๐๐บ๐ฃ๐ ๐๐ฟ๐ฟ๐ฎ๐ ๐ข๐ฝ๐ฒ๐ฟ๐ฎ๐๐ถ๐ผ๐ป๐:
- Creating Arrays
- Accessing Array Elements
- Slicing and Indexing
- Reshaping Arrays
- Combining Arrays
- Splitting Arrays
- Arithmetic Operations
- Broadcasting
๐ช๐ผ๐ฟ๐ธ๐ถ๐ป๐ด ๐๐ถ๐๐ต ๐๐ฎ๐๐ฎ ๐ถ๐ป ๐ก๐๐บ๐ฃ๐:
- Reading and Writing Data with NumPy
- Filtering and Sorting Data
- Data Manipulation with NumPy
- Interpolation
- Fourier Transforms
- Window Functions
๐ฃ๐ฒ๐ฟ๐ณ๐ผ๐ฟ๐บ๐ฎ๐ป๐ฐ๐ฒ ๐ข๐ฝ๐๐ถ๐บ๐ถ๐๐ฎ๐๐ถ๐ผ๐ป ๐๐ถ๐๐ต ๐ก๐๐บ๐ฃ๐:
- Vectorization
- Memory Management
- Multithreading and Multiprocessing
- Parallel Computing
๐16โค8