Python for Data Analysts
49.3K subscribers
488 photos
65 files
305 links
Find top Python resources from global universities, cool projects, and learning materials for data analytics.

For promotions: @coderfun

Useful links: heylink.me/DataAnalytics
Download Telegram
πŸš€ Agentic AI Developer Certification Program
πŸ”₯ 100% FREE | Self-Paced | Career-Changing

πŸ‘¨β€πŸ’» Learn to build:
βœ… | Chatbots
βœ… | AI Assistants
βœ… | Multi-Agent Systems

⚑️ Master tools like LangChain, LangGraph, RAGAS, & more.

Join now ‡️
https://go.readytensor.ai/cert-511-agentic-ai-certification

Double Tap β™₯️ For More
❀6πŸ‘1
Data Analytics Projects List✨! πŸ’ΌπŸ“Š

Beginner-Level Projects 🏁
(Focus: Excel, SQL, data cleaning)

1️⃣ Sales performance dashboard in Excel
2️⃣ Customer feedback summary using text data
3️⃣ Clean and analyze a CSV file with missing data
4️⃣ Product inventory analysis with pivot tables
5️⃣ Use SQL to query and visualize a retail dataset
6️⃣ Create a revenue tracker by month and category
7️⃣ Analyze demographic data from a survey
8️⃣ Market share analysis across product lines
9️⃣ Simple cohort analysis using Excel
πŸ”Ÿ User signup trends using SQL GROUP BY and DATE

Intermediate-Level Projects πŸš€
(Focus: Python, data visualization, EDA)

1️⃣ Churn analysis from telco dataset using Python
2️⃣ Power BI sales dashboard with filters & slicers
3️⃣ E-commerce data segmentation with clustering
4️⃣ Forecast site traffic using moving averages
5️⃣ Analyze Netflix/Bollywood IMDB datasets
6️⃣ A/B test results evaluation for marketing campaign
7️⃣ Customer lifetime value prediction
8️⃣ Explore correlations in vaccination or health datasets
9️⃣ Predict loan approval using logistic regression
πŸ”Ÿ Create a Tableau dashboard highlighting HR insights

Advanced-Level Projects πŸ”₯
(Focus: Machine learning, big data, real-world scenarios)

1️⃣ Fraud detection using anomaly detection on banking data
2️⃣ Real-time dashboard using streaming data (Power BI + API)
3️⃣ Predictive model for sales forecasting with ML
4️⃣ NLP sentiment analysis of product reviews or tweets
5️⃣ Recommender system for e-commerce products
6️⃣ Build ETL pipeline (Python + SQL + cloud storage)
7️⃣ Analyze and visualize stock market trends
8️⃣ Big data analysis using Spark on a large dataset
9️⃣ Create a data compliance audit dashboard
πŸ”Ÿ Geospatial heatmap of business locations vs revenue

πŸ“‚ Pro Tip: Host these on GitHub, add visuals, and explain your processβ€”great for impressing recruiters! πŸ™Œ

πŸ’¬ React β™₯️ for more
❀17πŸ‘5πŸ₯°2
Python Pandas 🐼
❀11πŸ‘3
πŸš€ Essential Python/ Pandas snippets to explore data:
 
1.   .head() - Review top rows
2.   .tail() - Review bottom rows
3.   .info() - Summary of DataFrame
4.   .shape - Shape of DataFrame
5.   .describe() - Descriptive stats
6.   .isnull().sum() - Check missing values
7.   .dtypes - Data types of columns
8.   .unique() - Unique values in a column
9.   .nunique() - Count unique values
10.   .value_counts() - Value counts in a column
11.   .corr() - Correlation matrix
❀7πŸ‘6
πŸ”₯ Guys, Another Big Announcement!

I’m launching a Python Interview Series πŸπŸ’Ό β€” your complete guide to cracking Python interviews from beginner to advanced level!

This will be a week-by-week series designed to make you interview-ready β€” covering core concepts, coding questions, and real interview scenarios asked by top companies.

Here’s what’s coming your way πŸ‘‡

πŸ”Ή Week 1: Python Fundamentals (Beginner Level)
β€’ Data types, variables & operators
β€’ If-else, loops & functions
β€’ Input/output & basic problem-solving
πŸ’‘ *Practice:* Reverse string, Prime check, Factorial, Palindrome

πŸ”Ή Week 2: Data Structures in Python
β€’ Lists, Tuples, Sets, Dictionaries
β€’ Comprehensions (list, dict, set)
β€’ Sorting, searching, and nested structures
πŸ’‘ *Practice:* Frequency count, remove duplicates, find max/min

πŸ”Ή Week 3: Functions, Modules & File Handling
β€’ *args, *kwargs, lambda, map/filter/reduce
β€’ File read/write, CSV handling
β€’ Modules & imports
πŸ’‘ *Practice:* Create custom functions, read data files, handle errors

πŸ”Ή Week 4: Object-Oriented Programming (OOP)
β€’ Classes, objects, inheritance, polymorphism
β€’ Encapsulation & abstraction
β€’ Magic methods (__init__, __str__)
πŸ’‘ *Practice:* Build a simple class like BankAccount or StudentSystem

πŸ”Ή Week 5: Exception Handling & Logging
β€’ try-except-else-finally
β€’ Custom exceptions
β€’ Logging errors & debugging best practices
πŸ’‘ *Practice:* File operations with proper error handling

πŸ”Ή Week 6: Advanced Python Concepts
β€’ Decorators, generators, iterators
β€’ Closures & context managers
β€’ Shallow vs deep copy
πŸ’‘ *Practice:* Create your own decorator, generator examples

πŸ”Ή Week 7: Pandas & NumPy for Data Analysis
β€’ DataFrame basics, filtering & grouping
β€’ Handling missing data
β€’ NumPy arrays, slicing, and aggregation
πŸ’‘ *Practice:* Analyze small CSV datasets

πŸ”Ή Week 8: Python for Analytics & Visualization
β€’ Matplotlib, Seaborn basics
β€’ Data summarization & correlation
β€’ Building simple dashboards
πŸ’‘ *Practice:* Visualize sales or user data

πŸ”Ή Week 9: Real Interview Questions (Intermediate–Advanced)
β€’ 50+ Python interview questions with answers
β€’ Common logical & coding tasks
β€’ Real company-style questions (Infosys, TCS, Deloitte, etc.)
πŸ’‘ *Practice:* Solve daily problem sets

πŸ”Ή Week 10: Final Interview Prep (Mock & Revision)
β€’ End-to-end mock interviews
β€’ Python project discussion tips
β€’ Resume & GitHub portfolio guidance

πŸ“Œ Each week includes:
βœ… Key Concepts & Examples
βœ… Coding Snippets & Practice Tasks
βœ… Real Interview Q&A
βœ… Mini Quiz & Discussion

πŸ‘ React ❀️ if you’re ready to master Python interviews!

πŸ‘‡ You can access it from here: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L/2099
❀13
Python CheatSheet πŸ“š βœ…

1. Basic Syntax
- Print Statement: print("Hello, World!")
- Comments: # This is a comment

2. Data Types
- Integer: x = 10
- Float: y = 10.5
- String: name = "Alice"
- List: fruits = ["apple", "banana", "cherry"]
- Tuple: coordinates = (10, 20)
- Dictionary: person = {"name": "Alice", "age": 25}

3. Control Structures
- If Statement:

     if x > 10:
print("x is greater than 10")

- For Loop:

     for fruit in fruits:
print(fruit)

- While Loop:

     while x < 5:
x += 1

4. Functions
- Define Function:

     def greet(name):
return f"Hello, {name}!"

- Lambda Function: add = lambda a, b: a + b

5. Exception Handling
- Try-Except Block:

     try:
result = 10 / 0
except ZeroDivisionError:
print("Cannot divide by zero.")

6. File I/O
- Read File:

     with open('file.txt', 'r') as file:
content = file.read()

- Write File:

     with open('file.txt', 'w') as file:
file.write("Hello, World!")

7. List Comprehensions
- Basic Example: squared = [x**2 for x in range(10)]
- Conditional Comprehension: even_squares = [x**2 for x in range(10) if x % 2 == 0]

8. Modules and Packages
- Import Module: import math
- Import Specific Function: from math import sqrt

9. Common Libraries
- NumPy: import numpy as np
- Pandas: import pandas as pd
- Matplotlib: import matplotlib.pyplot as plt

10. Object-Oriented Programming
- Define Class:

      class Dog:
def __init__(self, name):
self.name = name
def bark(self):
return "Woof!"


11. Virtual Environments
- Create Environment: python -m venv myenv
- Activate Environment:
- Windows: myenv\Scripts\activate
- macOS/Linux: source myenv/bin/activate

12. Common Commands
- Run Script: python script.py
- Install Package: pip install package_name
- List Installed Packages: pip list

This Python checklist serves as a quick reference for essential syntax, functions, and best practices to enhance your coding efficiency!

Checklist for Data Analyst: https://dataanalytics.beehiiv.com/p/data

Here you can find essential Python Interview ResourcesπŸ‘‡
https://t.me/DataSimplifier

Like for more resources like this πŸ‘ β™₯️

Share with credits: https://t.me/sqlspecialist

Hope it helps :)
❀4
πŸš€ Greetings from PVR Cloud Tech!! 🌈

Kickstart Your Career in Azure Data Engineering – The Smart Way in 2025!

πŸ“Œ Start Date: 13th October 2025

⏰ Time: 7 AM – 8 AM IST | Monday

πŸ”Ή Course Content:
https://drive.google.com/file/d/1YufWV0Ru6SyYt-oNf5Mi5H8mmeV_kfP-/view

πŸ“± Join WhatsApp Group:
https://chat.whatsapp.com/CONhbkkRrnB8MK7GjXbXS4

πŸ“₯ Register Now:
https://forms.gle/nbJLnyPA6Cg9ZWVi6

πŸ“Ί WhatsApp Channel:
https://www.whatsapp.com/channel/0029Vb60rGU8V0thkpbFFW2n

Team
PVR Cloud Tech :)
+91-9346060794