Drag-and-Drop на Python+OpenCV
В данной статье расскажу про простой Drag-and-Drop на Python+OpenCV. Идея заключается в перемещении созданных квадратов на экране жестами руки. Так как нам потребуется как-то воспроизводить клик, то представим, что кликом будет служить соединение указательного и среднего пальцев.
Статья
В данной статье расскажу про простой Drag-and-Drop на Python+OpenCV. Идея заключается в перемещении созданных квадратов на экране жестами руки. Так как нам потребуется как-то воспроизводить клик, то представим, что кликом будет служить соединение указательного и среднего пальцев.
Статья
Обработка изображений с помощью библиотеки Python Pillow
В этом руководстве представлен обзор возможностей библиотеки Python Pillow с помощью распространенных методов. Как только вы освоитесь в использовании этих методов, вы сможете использовать документацию Pillow для изучения остальных методов в библиотеке. Если вы никогда раньше не работали с изображениями в Python, это отличная возможность сразу приступить!
Статья
В этом руководстве представлен обзор возможностей библиотеки Python Pillow с помощью распространенных методов. Как только вы освоитесь в использовании этих методов, вы сможете использовать документацию Pillow для изучения остальных методов в библиотеке. Если вы никогда раньше не работали с изображениями в Python, это отличная возможность сразу приступить!
Статья
Восстановление (импутация) данных с помощью Python
На данный момент Python является самым популярным языком программирования, который применяется для анализа данных или в машинном обучении. Сильными сторонами Python являются его модульность и возможность интегрироваться с другими языками программирования.
В науке о данных разведочный анализ данных (exploratory data analysis, EDA) является самым важным этапом в проекте и занимает около 70-80% времени всего проекта. Такой анализ позволяет изучить какие-то свойства данных, найти в них закономерности, аномалии, очистить их, подготовить и построить начальные модели для дальнейшей работы. На этом этапе можно определить вид распределения, оценить основные его параметры, обнаружить выбросы, построить матрицу корреляции признаков и т.д.
Статья
На данный момент Python является самым популярным языком программирования, который применяется для анализа данных или в машинном обучении. Сильными сторонами Python являются его модульность и возможность интегрироваться с другими языками программирования.
В науке о данных разведочный анализ данных (exploratory data analysis, EDA) является самым важным этапом в проекте и занимает около 70-80% времени всего проекта. Такой анализ позволяет изучить какие-то свойства данных, найти в них закономерности, аномалии, очистить их, подготовить и построить начальные модели для дальнейшей работы. На этом этапе можно определить вид распределения, оценить основные его параметры, обнаружить выбросы, построить матрицу корреляции признаков и т.д.
Статья
Группы асинхронных задач в Python 3.11
Вчера на официальном сайте был опубликован первый релиз-кандидат Python 3.11, который принесет важные оптимизации и доработки в возможности языка. Релиз планируется в октябре этого года, но уже сейчас можно поэкспериментировать с новыми возможностями и сегодня мы поговорим о группах исключений и асинхронных задач. Первые позволяют одновременно выбрасывать и обрабатывать несколько исключений, в то время как вторые позволяют объединять задачи в общий event loop и координированно управлять группами задач.
Статья
Вчера на официальном сайте был опубликован первый релиз-кандидат Python 3.11, который принесет важные оптимизации и доработки в возможности языка. Релиз планируется в октябре этого года, но уже сейчас можно поэкспериментировать с новыми возможностями и сегодня мы поговорим о группах исключений и асинхронных задач. Первые позволяют одновременно выбрасывать и обрабатывать несколько исключений, в то время как вторые позволяют объединять задачи в общий event loop и координированно управлять группами задач.
Статья
Одна панель, чтобы объединить все визуализации. Panel for Python
Качественная визуализация данных не менее важна для анализа данных, чем методы математической обработки. На сегодняшний день существуют десятки (если не сотни) библиотек для визуализации наборов данных на Python, но иногда в них встречаются уникальные возможности и хотелось бы иметь возможность объединить различные инструменты в единой панели. В статье мы рассмотрим основы библиотеки panel для реализации реактивной модели интерактивных визуализаций и попробуем объединить визуализации из разных библиотек в одном dashboard.
Статья
Качественная визуализация данных не менее важна для анализа данных, чем методы математической обработки. На сегодняшний день существуют десятки (если не сотни) библиотек для визуализации наборов данных на Python, но иногда в них встречаются уникальные возможности и хотелось бы иметь возможность объединить различные инструменты в единой панели. В статье мы рассмотрим основы библиотеки panel для реализации реактивной модели интерактивных визуализаций и попробуем объединить визуализации из разных библиотек в одном dashboard.
Статья
Подбираем скины в Counter-Strike: Global Offensive в цвет сумочки
Многопользовательская Counter-Strike: Global Offensive наполнена различными раскрасками для оружия разной степени редкости и привлекательности. Некоторые игроки гонятся за уникальными скинами, а другие выбирают на основе субъективного вкуса. Помимо официальной торговой площадки Steam, скины можно купить на сторонних ресурсах, доверие к которым невелико. Но в обоих случаях нет фильтра по цвету.
Вручную перебирать все варианты раскраски для всех видов вооружений очень долго. К счастью, проблему можно автоматизировать. В статье я покажу, как извлечь необходимые ресурсы из игры, и еще раз поговорю про сложность определения схожести цветов.
Статья
Многопользовательская Counter-Strike: Global Offensive наполнена различными раскрасками для оружия разной степени редкости и привлекательности. Некоторые игроки гонятся за уникальными скинами, а другие выбирают на основе субъективного вкуса. Помимо официальной торговой площадки Steam, скины можно купить на сторонних ресурсах, доверие к которым невелико. Но в обоих случаях нет фильтра по цвету.
Вручную перебирать все варианты раскраски для всех видов вооружений очень долго. К счастью, проблему можно автоматизировать. В статье я покажу, как извлечь необходимые ресурсы из игры, и еще раз поговорю про сложность определения схожести цветов.
Статья
Аутентификация в Django при помощи Metamask
Сегодня мы напишем простой сниппет для аутентификации пользователей на сайте при помощи кошелька Metamask. Замечу, что данное решение максимально изолировано от фреймворка. Вы сможете легко адаптировать его не только к Django, но и к Flask, Sanic, Starlette, Aiohttp и т.п.
Статья
Сегодня мы напишем простой сниппет для аутентификации пользователей на сайте при помощи кошелька Metamask. Замечу, что данное решение максимально изолировано от фреймворка. Вы сможете легко адаптировать его не только к Django, но и к Flask, Sanic, Starlette, Aiohttp и т.п.
Статья
Как встроить блокнот Jupyter на любой сайт
JupyterLite по умолчанию поставляется с ядром на Pyodide и IPython и самым разным функционалом, от автодополнения кода до интерактивных визуализаций. В последних релизах JupyterLite по умолчанию поставляется c REPL, которая устанавливается на любой сайт.
Статья
JupyterLite по умолчанию поставляется с ядром на Pyodide и IPython и самым разным функционалом, от автодополнения кода до интерактивных визуализаций. В последних релизах JupyterLite по умолчанию поставляется c REPL, которая устанавливается на любой сайт.
Статья
Как выбрать в Python подходящий конкурентный API
При помощи Python решаются задачи для все более высоконагруженных приложений, и для таких вычислений необходимо реализовывать конкурентную обработку. В этом руководстве описана полезная пошаговая процедура для выбора наиболее подходящего конкурентного API.
Статья
При помощи Python решаются задачи для все более высоконагруженных приложений, и для таких вычислений необходимо реализовывать конкурентную обработку. В этом руководстве описана полезная пошаговая процедура для выбора наиболее подходящего конкурентного API.
Статья