PYTHON qaysi sohada yetakchi deb o'ylaysiz?
Anonymous Poll
15%
Competitive programming
19%
Telegram bot
25%
Backend
29%
AI & ML
10%
Cyber Security
3%
Boshqa(izohlarda yozing)
Forwarded from I am AYTIshnik 👨💻
Bu rasmlarni nima bog'lab turadi?
💻 Inson mehnati AI dan ko'ra arzon (hozircha).
MIT universitetining tadqiqotlariga qaraganda. Inson sun'iy intellekt robotlariga qaraganda 2 baravar arzon ishchi kuchi hisoblanadi. Buning ustiga insonlar o'z vazifasidan tashqari ishlarni ham bajarishadi...
Ammo tadqiqotlar bu uzoq davom etmasligi va yaqin yillarda robotlar arzon ishchi kuchiga aylanishini ko'rsatmoqda.
MIT universitetining tadqiqotlariga qaraganda. Inson sun'iy intellekt robotlariga qaraganda 2 baravar arzon ishchi kuchi hisoblanadi. Buning ustiga insonlar o'z vazifasidan tashqari ishlarni ham bajarishadi...
Ammo tadqiqotlar bu uzoq davom etmasligi va yaqin yillarda robotlar arzon ishchi kuchiga aylanishini ko'rsatmoqda.
Forwarded from Algorithmic School IT Center Samarkand
Hozirga qadar kompyuterlar uchun eng ko'p foydalanilgan operatsion tizim qaysi?
Какая операционная система для компьютеров на данный момент является наиболее используемой?
Какая операционная система для компьютеров на данный момент является наиболее используемой?
Anonymous Quiz
7%
Mac OS
13%
Linux
78%
Windows
2%
Chrome OS
🏆 Diqqat Musobaqa 🏆
Pythonchilar diqqatiga. O'z bilimlaringizni sinab ko'ring!
🤖 RoboContest Round #87 div3 va 🤖 RoboContest Round #88 div2
📊 Div3 - reytingi [1000,1500] oralig'idagi ishtirokchilar uchun rated
📊 Div2 - reytingi [1501, ∞] oralig'idagi ishtirokchilar uchun rated
Agar reyting mos kelmasa unrated qatnashish imkoni mavjud, ya'ni reyting berilmaydi/
📆Contest boshlanish vaqti: 05.03.2024 19:30
📆Contest tugash vaqti: 05.03.2024 21:30
⏰Contest davomiyligi: 2 soat
👨🏫 Muallif: Sardor Salimov
💬Agar savollar bo’lsa @robocontest_chat ga murojaat qiling.
🤖🤖🤖🤖🤖
@robocontest
#contest #rated
(Savollar o'zbekcha va ruscha tillarda bo'ladi)
Pythonchilar diqqatiga. O'z bilimlaringizni sinab ko'ring!
🤖 RoboContest Round #87 div3 va 🤖 RoboContest Round #88 div2
📊 Div3 - reytingi [1000,1500] oralig'idagi ishtirokchilar uchun rated
📊 Div2 - reytingi [1501, ∞] oralig'idagi ishtirokchilar uchun rated
Agar reyting mos kelmasa unrated qatnashish imkoni mavjud, ya'ni reyting berilmaydi/
📆Contest boshlanish vaqti: 05.03.2024 19:30
📆Contest tugash vaqti: 05.03.2024 21:30
⏰Contest davomiyligi: 2 soat
👨🏫 Muallif: Sardor Salimov
💬Agar savollar bo’lsa @robocontest_chat ga murojaat qiling.
🤖🤖🤖🤖🤖
@robocontest
#contest #rated
(Savollar o'zbekcha va ruscha tillarda bo'ladi)
Forwarded from Algo Vision
Rasm yoki freymdan malum predmet obekt ni joylashuvni olamiz.
Bu ham juda oson 5-6 qatorda bajariladi.
Bu ham juda oson 5-6 qatorda bajariladi.
from ultralytics import YOLO
model = YOLO("yolov8s.pt")
ans = model.predict(source= ".../person.jpeg", show = True, imgsz = 320, conf = 0.7)
#yolov8s bir nechta turdagi obektlarni detection qila oladi
for obj in ans:
box = obj.boxes
print(box)
Forwarded from Algo Vision
PYTHON DASTURLASH TILI
Rasm yoki freymdan malum predmet obekt ni joylashuvni olamiz. Bu ham juda oson 5-6 qatorda bajariladi. from ultralytics import YOLO model = YOLO("yolov8s.pt") ans = model.predict(source= ".../person.jpeg", show = True, imgsz = 320, conf = 0.7) #yolov8s bir…
Agar natija olib kursak
Shunga uxshagan natija beradi.
Natija siz ishlatayotgan freymworkga bogliq (Pytorch, ....)
Demak birinchi listda sinf (0-bu odam umumiy sinflar
keyin esa conf yane har bitta obektni aniqlash aniqligi ruyxati (rasmda bir nechta obekt buladi)
keyin esa bizga obekt joylashuvi xywh yane yuqori chap burchag koordinatasi va w-uzunlik h-balandlik beriladi.
bundan tashqari biz turtburchak asosida malumotni olishimiz mumkin yuqori chao va pastgi ong xyxy
cls: tensor([0., 0., 0., 0., 0., 0., 0.])
conf: tensor([0.8909, 0.8682, 0.8674, 0.8622, 0.8439, 0.8392, 0.7159])
data: tensor([[1.6254e+02, 2.2389e+01, 2.5266e+02, 1.6701e+02, 8.9091e-01, 0.0000e+00],
[2.3503e+02, 3.1486e+01, 2.9971e+02, 1.6686e+02, 8.6820e-01, 0.0000e+00],
[2.1997e+01, 5.3749e+01, 7.4538e+01, 1.6752e+02, 8.6741e-01, 0.0000e+00],
[1.1284e+02, 3.2849e+01, 1.6784e+02, 1.6768e+02, 8.6221e-01, 0.0000e+00],
[6.3885e+01, 4.3812e+01, 1.1679e+02, 1.6726e+02, 8.4389e-01, 0.0000e+00],
[3.2759e-02, 5.2869e+00, 4.6813e+01, 1.6724e+02, 8.3916e-01, 0.0000e+00],
[1.5617e+02, 1.0563e+01, 1.9749e+02, 9.0878e+01, 7.1594e-01, 0.0000e+00]])
id: None
is_track: False
orig_shape: (168, 300)
shape: torch.Size([7, 6])
xywh: tensor([[207.5979, 94.6973, 90.1146, 144.6161],
[267.3671, 99.1744, 64.6808, 135.3771],
[ 48.2676, 110.6329, 52.5402, 113.7673],
[140.3382, 100.2657, 55.0010, 134.8336],
[ 90.3380, 105.5342, 52.9057, 123.4454],
[ 23.4231, 86.2625, 46.7806, 161.9512],
[176.8280, 50.7202, 41.3200, 80.3153]])
xywhn: tensor([[0.6920, 0.5637, 0.3004, 0.8608],
[0.8912, 0.5903, 0.2156, 0.8058],
[0.1609, 0.6585, 0.1751, 0.6772],
[0.4678, 0.5968, 0.1833, 0.8026],
[0.3011, 0.6282, 0.1764, 0.7348],
[0.0781, 0.5135, 0.1559, 0.9640],
[0.5894, 0.3019, 0.1377, 0.4781]])
xyxy: tensor([[1.6254e+02, 2.2389e+01, 2.5266e+02, 1.6701e+02],
[2.3503e+02, 3.1486e+01, 2.9971e+02, 1.6686e+02],
[2.1997e+01, 5.3749e+01, 7.4538e+01, 1.6752e+02],
[1.1284e+02, 3.2849e+01, 1.6784e+02, 1.6768e+02],
[6.3885e+01, 4.3812e+01, 1.1679e+02, 1.6726e+02],
[3.2759e-02, 5.2869e+00, 4.6813e+01, 1.6724e+02],
[1.5617e+02, 1.0563e+01, 1.9749e+02, 9.0878e+01]])
xyxyn: tensor([[5.4180e-01, 1.3327e-01, 8.4218e-01, 9.9408e-01],
[7.8342e-01, 1.8742e-01, 9.9902e-01, 9.9323e-01],
[7.3325e-02, 3.1994e-01, 2.4846e-01, 9.9712e-01],
[3.7613e-01, 1.9553e-01, 5.5946e-01, 9.9811e-01],
[2.1295e-01, 2.6078e-01, 3.8930e-01, 9.9558e-01],
[1.0920e-04, 3.1470e-02, 1.5604e-01, 9.9546e-01],
[5.2056e-01, 6.2872e-02, 6.5829e-01, 5.4094e-01]])
Shunga uxshagan natija beradi.
Natija siz ishlatayotgan freymworkga bogliq (Pytorch, ....)
Demak birinchi listda sinf (0-bu odam umumiy sinflar
names: {0: 'person', 1: 'bicycle', 2: 'car', 3: 'motorcycle', 4: 'airplane', 5: 'bus', 6: 'train', 7: 'truck', 8: 'boat', 9: 'traffic light', 10: 'fire hydrant', 11: 'stop sign', 12: 'parking meter', 13: 'bench', 14: 'bird', 15: 'cat', 16: 'dog', 17: 'horse', 18: 'sheep', 19: 'cow', 20: 'elephant', 21: 'bear', 22: 'zebra', 23: 'giraffe', 24: 'backpack', 25: 'umbrella', 26: 'handbag', 27: 'tie', 28: 'suitcase', 29: 'frisbee', 30: 'skis', 31: 'snowboard', 32: 'sports ball', 33: 'kite', 34: 'baseball bat', 35: 'baseball glove', 36: 'skateboard', 37: 'surfboard', 38: 'tennis racket', 39: 'bottle', 40: 'wine glass', 41: 'cup', 42: 'fork', 43: 'knife', 44: 'spoon', 45: 'bowl', 46: 'banana', 47: 'apple', 48: 'sandwich', 49: 'orange', 50: 'broccoli', 51: 'carrot', 52: 'hot dog', 53: 'pizza', 54: 'donut', 55: 'cake', 56: 'chair', 57: 'couch', 58: 'potted plant', 59: 'bed', 60: 'dining table', 61: 'toilet', 62: 'tv', 63: 'laptop', 64: 'mouse', 65: 'remote', 66: 'keyboard', 67: 'cell phone', 68: 'microwave', 69: 'oven', 70: 'toaster', 71: 'sink', 72: 'refrigerator', 73: 'book', 74: 'clock', 75: 'vase', 76: 'scissors', 77: 'teddy bear', 78: 'hair drier', 79: 'toothbrush'}
)
keyin esa conf yane har bitta obektni aniqlash aniqligi ruyxati (rasmda bir nechta obekt buladi)
keyin esa bizga obekt joylashuvi xywh yane yuqori chap burchag koordinatasi va w-uzunlik h-balandlik beriladi.
bundan tashqari biz turtburchak asosida malumotni olishimiz mumkin yuqori chao va pastgi ong xyxy
Forwarded from Algo Vision
PYTHON DASTURLASH TILI
Agar natija olib kursak cls: tensor([0., 0., 0., 0., 0., 0., 0.]) conf: tensor([0.8909, 0.8682, 0.8674, 0.8622, 0.8439, 0.8392, 0.7159]) data: tensor([[1.6254e+02, 2.2389e+01, 2.5266e+02, 1.6701e+02, 8.9091e-01, 0.0000e+00], [2.3503e+02, 3.1486e+01…
Umumiy natija