Библиотека igraph
igraph предназначена для работы с графами и сетями. Она позволяет строить, анализировать и визуализировать графы.
Основные возможности
🔗 Python tricks
igraph предназначена для работы с графами и сетями. Она позволяет строить, анализировать и визуализировать графы.
Igraph часто используется при анализе социальных сетей, изучении структуры больших сетей (например, ссылок в интернете), в биоинформатике для анализа взаимодействий белков и других задач, связанных с теорией графов. Основные возможности
igraph — генерация случайных и классических графов, вычисление различных метрик (степени вершин, диаметра графа и т. д.), поиск сообществ и кластеров.🔗 Python tricks
Библиотека xarray
xarray предназначена для работы с многомерными данными и массивами.
Она позволяет удобно хранить и обрабатывать данные с метаданными, такими как координаты, время и другие измерения.
Основные преимущества
В этом примере создана
🔗 Python tricks
xarray предназначена для работы с многомерными данными и массивами.
Она позволяет удобно хранить и обрабатывать данные с метаданными, такими как координаты, время и другие измерения.
Xarray часто используется в научных вычислениях и анализе данных, особенно при работе с геопространственными данными, временными рядами, метеоданными и другой многомерной информацией. Основные преимущества
xarray — это возможность помечать оси данных и выполнять операции по этим осям, легкость совместного использования данных и метаданных.В этом примере создана
DataArray со случайными данными размерностей 2x3. Для осей заданы метки "city" и "year". Это позволяет легко обращаться к данным по городам и годам. Xarray сохраняет метаданные вместе с данными.🔗 Python tricks