Python tricks | Хитрости Питона
5.6K subscribers
2.21K photos
26 videos
1 file
2.52K links
Здесь вы найдете лучшие практики и приёмы, которые используют опытные программисты.

Сотрудничество: @SIeep_Token

Мы на платформе: https://telegram.me/python_tricks

Ссылка на канал: https://t.me/+QayZf6ccsQllZTYy
Download Telegram
Чтение больших файлов построчно с помощью итераторов

Когда нужно обработать большой файл, загрузка его целиком в память может быть неэффективной или даже невозможной. Использование итераторов для чтения файла построчно позволяет значительно экономить память.

Этот подход позволяет эффективно работать с файлами, избегая проблем с недостатком памяти и улучшая производительность обработки данных.

🔗 Python tricks
Быстрая замена значений в столбце DataFrame на основе условий

Когда у вас есть DataFrame и вам нужно заменить значения в столбце на основе определенных условий, вместо использования циклов, можно воспользоваться методом np.where из библиотеки NumPy.

Этот лайфхак помогает заменить значения в столбце DataFrame на основе заданных условий, избегая использования циклов и делая код более читаемым и эффективным. Он будет особенно полезен для аналитиков данных и всех, кто работает с большими наборами данных, где требуется производить массовые изменения данных на основе условий.

🔗 Python tricks
Использование zip для объединения списков

Функция zip в Python позволяет объединять несколько списков в один, создавая пары элементов. Это особенно полезно, когда вы хотите обрабатывать данные из нескольких списков одновременно, например, при работе с данными, где у вас есть связанные списки (например, имена и возраст).

Использование zip позволяет легко и эффективно объединять данные, делая код более понятным и лаконичным.

🔗 Python tricks
Использование zip для объединения списков

Функция zip в Python позволяет объединять несколько списков в один, создавая пары элементов. Это особенно полезно, когда вы хотите обрабатывать данные из нескольких списков одновременно, например, при работе с данными, где у вас есть связанные списки (например, имена и возраст).

Использование zip позволяет легко и эффективно объединять данные, делая код более понятным и лаконичным.

🔗 Python tricks
Использование f-строк для форматирования строк

С версии Python 3.6 в языке появились так называемые f-строки (или формируемые строки), которые позволяют более удобным и читаемым образом форматировать строки. Это особенно полезно, когда вам нужно вставить переменные или выражения прямо в строку.

Использование f-строк упрощает процесс создания строк с динамическими данными и делает код более интуитивно понятным.

🔗 Python tricks
Метод Counter.elements()

Метод Counter.elements() возвращает итератор по элементам в словаре Counter.
Этот метод позволяет эффективно перебрать элементы словаря Counter без создания копии.

Как видно из примера, метод elements() возвращает итератор по элементам словаря Counter в порядке их добавления.
Это позволяет эффективно обрабатывать элементы, не создавая промежуточные структуры данных.

🔗 Python tricks
Библиотека igraph

igraph предназначена для работы с графами и сетями. Она позволяет строить, анализировать и визуализировать графы.

Igraph часто используется при анализе социальных сетей, изучении структуры больших сетей (например, ссылок в интернете), в биоинформатике для анализа взаимодействий белков и других задач, связанных с теорией графов.

Основные возможности igraph — генерация случайных и классических графов, вычисление различных метрик (степени вершин, диаметра графа и т. д.), поиск сообществ и кластеров.

🔗 Python tricks
Библиотека xarray

xarray предназначена для работы с многомерными данными и массивами.
Она позволяет удобно хранить и обрабатывать данные с метаданными, такими как координаты, время и другие измерения.

Xarray часто используется в научных вычислениях и анализе данных, особенно при работе с геопространственными данными, временными рядами, метеоданными и другой многомерной информацией.
Основные преимущества xarray — это возможность помечать оси данных и выполнять операции по этим осям, легкость совместного использования данных и метаданных.

В этом примере создана DataArray со случайными данными размерностей 2x3. Для осей заданы метки "city" и "year". Это позволяет легко обращаться к данным по городам и годам. Xarray сохраняет метаданные вместе с данными.

🔗 Python tricks
Метод isspace()

Метод isspace() проверяет, является ли символ пробельным.

Пробельными символами считаются:
— Пробел (' ').
— Табуляция ('\t').
— Перевод строки ('\n').
— Перевод каретки ('\r').
— Прочие unicode символы, определяемые как пробелы.

isspace() возвращает True, если символ пробельный, и False в противном случае.
Этот метод удобно использовать для проверки и обработки строк.

🔗 Python tricks
🔍Тестовое собеседование на Middle Python с Senior из X5 уже завтра!

Уже завтра(11 ноября) в 19:00 по мск приходи онлайн на открытое собеседование, чтобы посмотреть на настоящее интервью на Middle Python-разработчика.

Как это будет:
📂 Олег, старший разработчик в X5, будет задавать реальные вопросы и задачи разработчику-добровольцу
📂 Олег будет комментировать каждый ответ респондента, чтобы дать понять чего от вас ожидает собеседующий на интервью
📂 В конце можно будет задать любой вопрос Олегу

Это бесплатно. Эфир проходит в рамках менторской программы от ШОРТКАТ для Python-разработчиков, которые хотят повысить свой грейд, ЗП и прокачать скиллы.

Переходи в нашего бота, чтобы получить ссылку на эфир → @shortcut_py_bot

Реклама.
О рекламодателе.
Please open Telegram to view this post
VIEW IN TELEGRAM
collections.Counter

Collections.Counter — это класс, предназначенный для подсчета хешей (hashable объектов).
Он позволяет удобно и эффективно подсчитывать вхождения элементов в какой-либо последовательности.

Основное отличие Counter от обычного словаря в том, что он не выбрасывает исключение, если ключ не существует, а просто создает новый ключ со значением 0. Это упрощает подсчет элементов.
Counter может принимать на вход любую итерируемую последовательность (список, кортеж и т.д.).

Основные способы использования Counter:
— Подсчет слов или букв в тексте.
— Подсчет появления элементов в списке или итераторе.
— Нахождение наиболее часто встречающихся элементов.
— Использование при решении задач на вероятность и статистику.

🔗 Python tricks
collections.MutableMapping

Collections.MutableMapping — это интерфейс, который представляет изменяемое отображение (словарь).
Он наследуется от интерфейса Mapping и добавляет методы для изменения отображения, такие как __setitem__, __delitem__ и clear.

Основное преимущество в использовании MutableMapping — это возможность передавать экземпляры такого класса в любое API, ожидающее словарь.
Например, во многих функциях в стандартной библиотеке есть параметры типа dict. Если создать класс, реализующий MutableMapping, его экземпляры можно будет передавать в такие функции.

🔗 Python tricks