This media is not supported in your browser
VIEW IN TELEGRAM
🎥 ساخت سریال فرندز با استفاده از هوش مصنوعی
⏪ با استفاده از هوش مصنوعی، این ویدیو سریال فرندز رو در دهه ۵۰ میلادی به تصویر کشیده.
#هوش_مصنوعی #AI
@python_rd
⏪ با استفاده از هوش مصنوعی، این ویدیو سریال فرندز رو در دهه ۵۰ میلادی به تصویر کشیده.
#هوش_مصنوعی #AI
@python_rd
❤2
کاربرد های پایتون در هوش مصنوعی:
یادگیری ماشین و یادگیری عمیق: پایتون به عنوان یکی از زبانهای اصلی برای پیادهسازی الگوریتمهای یادگیری ماشین و یادگیری عمیق استفاده میشود. کتابخانههایی مانند TensorFlow و PyTorch که ابزارهای قدرتمندی برای این حوزه ارائه میدهند، به زبان پایتون پیادهسازی شدهاند.
پردازش زبان طبیعی (NLP): در حوزه پردازش زبان طبیعی، پایتون از طریق کتابخانههایی مانند NLTK (Natural Language Toolkit) و SpaCy استفاده میشود. این کتابخانهها برای تحلیل و پردازش متون به زبان انسانی، تشخیص انواع متن، ترجمه ماشینی و دیگر کاربردها به کار میروند.
پردازش تصویر و بینایی ماشین: برای پردازش تصویر و بینایی ماشین، پایتون از کتابخانههایی مانند OpenCV و scikit-image استفاده میکند. این کتابخانهها ابزارهایی برای تشخیص الگوها، تشخیص اشیا، تشخیص چهره، تشخیص اثر انگشت و سایر وظایف پردازش تصویر را فراهم میکنند.
سیستمهای پیشنهادگی: در سیستمهای پیشنهادگی (مانند سیستمهای پیشنهاد محتوا)، پایتون به عنوان زبان اصلی برنامهنویسی مورد استفاده قرار میگیرد. از کتابخانههایی مانند Surprise و LightFM برای پیادهسازی سیستمهای پیشنهادگی در پایتون استفاده میشود.
تحلیل داده و انتقال آنها به اطلاعات مفید: پایتون به عنوان یکی از ابزارهای اصلی برای تحلیل داده و استخراج اطلاعات از دادههای ساختار یافته و ناساختاری (مانند دادههای وب، دادههای حسگرها و دادههای مرتبط با IoT) به کار میرود. کتابخانههایی مانند Pandas، NumPy و scikit-learn به این منظور استفاده میشوند.
پردازش گفتار: برای پردازش سیگنالهای صوتی و تشخیص گفتار، پایتون از کتابخانههایی مانند SpeechRecognition و librosa استفاده میکند.
همچنین، پایتون به عنوان یک زبان برنامهنویسی چندمنظوره، در سایر حوزههای هوش مصنوعی نیز مورد استفاده قرار میگیرد مانند رباتیک، تحلیل اعمال تصویری، تجزیه و تحلیل دادههای بزرگ و غیره.
@python_rd
یادگیری ماشین و یادگیری عمیق: پایتون به عنوان یکی از زبانهای اصلی برای پیادهسازی الگوریتمهای یادگیری ماشین و یادگیری عمیق استفاده میشود. کتابخانههایی مانند TensorFlow و PyTorch که ابزارهای قدرتمندی برای این حوزه ارائه میدهند، به زبان پایتون پیادهسازی شدهاند.
پردازش زبان طبیعی (NLP): در حوزه پردازش زبان طبیعی، پایتون از طریق کتابخانههایی مانند NLTK (Natural Language Toolkit) و SpaCy استفاده میشود. این کتابخانهها برای تحلیل و پردازش متون به زبان انسانی، تشخیص انواع متن، ترجمه ماشینی و دیگر کاربردها به کار میروند.
پردازش تصویر و بینایی ماشین: برای پردازش تصویر و بینایی ماشین، پایتون از کتابخانههایی مانند OpenCV و scikit-image استفاده میکند. این کتابخانهها ابزارهایی برای تشخیص الگوها، تشخیص اشیا، تشخیص چهره، تشخیص اثر انگشت و سایر وظایف پردازش تصویر را فراهم میکنند.
سیستمهای پیشنهادگی: در سیستمهای پیشنهادگی (مانند سیستمهای پیشنهاد محتوا)، پایتون به عنوان زبان اصلی برنامهنویسی مورد استفاده قرار میگیرد. از کتابخانههایی مانند Surprise و LightFM برای پیادهسازی سیستمهای پیشنهادگی در پایتون استفاده میشود.
تحلیل داده و انتقال آنها به اطلاعات مفید: پایتون به عنوان یکی از ابزارهای اصلی برای تحلیل داده و استخراج اطلاعات از دادههای ساختار یافته و ناساختاری (مانند دادههای وب، دادههای حسگرها و دادههای مرتبط با IoT) به کار میرود. کتابخانههایی مانند Pandas، NumPy و scikit-learn به این منظور استفاده میشوند.
پردازش گفتار: برای پردازش سیگنالهای صوتی و تشخیص گفتار، پایتون از کتابخانههایی مانند SpeechRecognition و librosa استفاده میکند.
همچنین، پایتون به عنوان یک زبان برنامهنویسی چندمنظوره، در سایر حوزههای هوش مصنوعی نیز مورد استفاده قرار میگیرد مانند رباتیک، تحلیل اعمال تصویری، تجزیه و تحلیل دادههای بزرگ و غیره.
@python_rd
👍7
⭕️فریمورکها و کتابخانههای دیتاساینسی در زبان پایتون
1. NumPY
2. SciPY
3. TensorFlow
4. Keras
5. Matplotlib
6. Pandas
@python_rd
1. NumPY
2. SciPY
3. TensorFlow
4. Keras
5. Matplotlib
6. Pandas
@python_rd
❤4
Melanee AI & Physics
Photo
بدینوسیله با افتخار اعلام میکنم داکیومنت پروژه ی رمزگشایی کتیبه های باستانی گیلگمش (eBL) رو نوشتم.
مدتی بود که روی این پروژه کلی کار کردم و در مدیوم هم مقاله نوشتم و آخر سر به پروفسور انریکه جیمنز ایمیل زدم و به ایشون اطلاع دادم که برای ریپازیتوری داکیومنت پروژه اشون (پروژه مون🥺) پول رکئوست زدم و ایشون هم رکوئست من رو merge کردند و الان من یکی از contributor های این پروژه هستم! اصلا خودم باورم نمیشه🥺.
پروفسور انریکه جیمنز پاسخ ایمیلم هم دادند؛ چقدر با گرمی ازم استقبال کردند🥰.
خدایا شکرت💖
به وقت ۱۳ ژون ۲۰۲۴ میلادی
لینک پروژه:
https://github.com/Melanee-Melanee/Electronic-Babylonian-Library-eBL-documentation
مدتی بود که روی این پروژه کلی کار کردم و در مدیوم هم مقاله نوشتم و آخر سر به پروفسور انریکه جیمنز ایمیل زدم و به ایشون اطلاع دادم که برای ریپازیتوری داکیومنت پروژه اشون (پروژه مون🥺) پول رکئوست زدم و ایشون هم رکوئست من رو merge کردند و الان من یکی از contributor های این پروژه هستم! اصلا خودم باورم نمیشه🥺.
پروفسور انریکه جیمنز پاسخ ایمیلم هم دادند؛ چقدر با گرمی ازم استقبال کردند🥰.
خدایا شکرت💖
به وقت ۱۳ ژون ۲۰۲۴ میلادی
لینک پروژه:
https://github.com/Melanee-Melanee/Electronic-Babylonian-Library-eBL-documentation
❤25👍3🔥2👎1🕊1😍1