Forwarded from Коробка с питоном
Зачем нужно делать кастомную базовую Pydantic модель?
Сейчас некоторые со мной не согласятся, но я часто рекомендую делать базовую
Наличие такой глобальной модели позволяет настраивать поведение всех моделей в приложении. Рассмотрю несколько кейсов, когда это может понадобится.
1) Контроль над входными данными.
Например, мы хотим округлять все поля которые называются
P.S.: В коментах подметили, что такой подход неявный, и я с этим согласен. Ничего не мешает для таких целей сделать ещё одну базовую модель (
2) Кастомый энкодер/декодер json.
Пакет
Это происходит из-за того, что операций по (дe)сериализации json в приложении может быть много, и смена библиотеки, в этом случае, дает ощутимый прирост к общей скорости.
В pydantic есть 2 опции в конфиге, которые позволяют изменять поведение энкодера и декодера. Выглядит это так:
Сейчас некоторые со мной не согласятся, но я часто рекомендую делать базовую
pydantic
модель и наследовать все модели от неё.Наличие такой глобальной модели позволяет настраивать поведение всех моделей в приложении. Рассмотрю несколько кейсов, когда это может понадобится.
1) Контроль над входными данными.
Например, мы хотим округлять все поля которые называются
price
до трех знаков после запятой. Сделать это можно так:class CustomBaseModel(BaseModel):Валидаторы дают возможность изменять входящие данные, но это стоит использовать с осторожностью.
@root_validator()
def round_price(cls, data: dict) -> dict:
prices = {k: round(v, 3) for k, v in data.items() if k == "price"}
return {**data, **prices}
P.S.: В коментах подметили, что такой подход неявный, и я с этим согласен. Ничего не мешает для таких целей сделать ещё одну базовую модель (
PriceRoundBaseModel
), наследуясь от нашей базовой СustomBaseModel
и использовать её там, где такое поведение необходимо.2) Кастомый энкодер/декодер json.
Пакет
json
из стандартной библиотеки очень медленный. При необходимости ускорить сервис этот пакет в первую очередь пытаются заменить на что-то побыстрее.Это происходит из-за того, что операций по (дe)сериализации json в приложении может быть много, и смена библиотеки, в этом случае, дает ощутимый прирост к общей скорости.
В pydantic есть 2 опции в конфиге, которые позволяют изменять поведение энкодера и декодера. Выглядит это так:
def orjson_dumps(v, *, default):#pydantic
# orjson.dumps возвращает байты, поэтому нам надо их декодить, чтобы соответствовать сигнатуре json.dumps
return orjson.dumps(v, default=default).decode()
class CustomBaseModel(BaseModel):
class Config:
json_loads = orjson.loads
json_dumps = orjson_dumps
Forwarded from Коробка с питоном
Как запускать синхронные функции в асинхронном роуте FastAPI?
Иногда так случается, что приходится использовать синхронный код в асинхронном роуте.
Если мы попытаемся вызвать синхронную функцию в асинхронном коде - наш event loop заблокируется и всё "зависнет" до тех пор, пока синхронный код не отработает.
Решений, как это сделать, на самом деле много. Самый простой вариант, который предоставляет FastAPI(а если быть точнее - Starlette, который использует anyio) - функция run_in_threadpool, которая запустит синхронный код в потоке:
А как бы вы решали/решаете такую проблему? Пишите в комментариях 😎 !
#fastapi #anyio
Иногда так случается, что приходится использовать синхронный код в асинхронном роуте.
Если мы попытаемся вызвать синхронную функцию в асинхронном коде - наш event loop заблокируется и всё "зависнет" до тех пор, пока синхронный код не отработает.
Решений, как это сделать, на самом деле много. Самый простой вариант, который предоставляет FastAPI
@app.get("/")Кстати, BackgroundTask использует тот же самый способ, только он не возвращает результат выполнения.
async def my_router():
result = await service.execute()
client = SyncClient()
return await run_in_threadpool(client.execute, data=result)
А как бы вы решали/решаете такую проблему? Пишите в комментариях 😎 !
#fastapi #anyio
Forwarded from Николай Хитров | Блог
Релиз
Себастьян закончил обновление
Чейнжлог совсем небольшой получился
https://fastapi.tiangolo.com/release-notes/#01000
p.s. в ближайшее время доберусь до чейнжлога pydantic v2 и сделаю обзорный пост
FastAPI
0.100.0🔥Себастьян закончил обновление
pydantic
-а. Теперь можно насладиться звуком ржавчины и приростом скорости при переходе на новую версию FastAPI
.Чейнжлог совсем небольшой получился
https://fastapi.tiangolo.com/release-notes/#01000
p.s. в ближайшее время доберусь до чейнжлога pydantic v2 и сделаю обзорный пост
Forwarded from Коробка с питоном
GIL скорее всего уберут из Python!
Руководящий совет объяснил статус PEP 703 (сделать GIL опциональным). Если кратко, то понятно следующее:
— Они намерены принять PEP 703, но всё ещё работают над деталями, предстоит много работы.
— Вероятно, лет через пять сборка без GIL будет ЕДИНСТВЕННОЙ сборкой, так как они не хотят разделять комьюнити на no-GIL и GIL.
— Совет не хочет повторения ситуации с Python 3, поэтому большое внимание будет уделено обратной совместимости.
— Прежде чем отказаться от GIL, они внимательно будут изучать работу комьюнити в этом направлении. Ребята хотят убедиться, что переход будет плавным, а поддержка режима no-GIL будет достаточна.
— Не смотря на все это, совет хочет иметь возможность "дать заднюю", если для комьюнити и языка это принесёт намного больше проблем, чем профита.
Новость просто невероятная. Остается надеяться на комьюнити, будет ли оно готово адаптировать свои библиотеки под этот режим?
#gil
Руководящий совет объяснил статус PEP 703 (сделать GIL опциональным). Если кратко, то понятно следующее:
— Они намерены принять PEP 703, но всё ещё работают над деталями, предстоит много работы.
— Вероятно, лет через пять сборка без GIL будет ЕДИНСТВЕННОЙ сборкой, так как они не хотят разделять комьюнити на no-GIL и GIL.
— Совет не хочет повторения ситуации с Python 3, поэтому большое внимание будет уделено обратной совместимости.
— Прежде чем отказаться от GIL, они внимательно будут изучать работу комьюнити в этом направлении. Ребята хотят убедиться, что переход будет плавным, а поддержка режима no-GIL будет достаточна.
— Не смотря на все это, совет хочет иметь возможность "дать заднюю", если для комьюнити и языка это принесёт намного больше проблем, чем профита.
Новость просто невероятная. Остается надеяться на комьюнити, будет ли оно готово адаптировать свои библиотеки под этот режим?
#gil
Discussions on Python.org
A Steering Council notice about PEP 703 (Making the Global Interpreter Lock Optional in CPython)
Posting for the whole Steering Council, on the subject of @colesbury’s PEP 703 (Making the Global Interpreter Lock Optional in CPython). Thank you, everyone, for responding to the poll on the no-GIL proposal. It’s clear that the overall sentiment is positive…
Forwarded from Коробка с питоном
Появился PEP 723, который предлагает "встраивать"
Предлагается добавить переменную
К примеру, вот так будет выглядеть скрипт, которому для работы нужна библиотека
#pep
pyproject.toml
в однофайловые скрипты. Предлагается добавить переменную
__pyproject__
, которая будет содержать в себе валидный TOML, описывающий метадату скрипта, в том числе как скрипт запускать и какие зависимости необходимы для запуска.К примеру, вот так будет выглядеть скрипт, которому для работы нужна библиотека
requests
и питон 3.11 или выше:__pyproject__ = """PEP прикольный, что-то такое есть в качестве экспериментального RFC в Rust. Из минусов хотел бы отметить то, что автоматическая установка зависимостей может привести к запуску нежелательного кода. Но решение банальное - перед тем как что-то запускать, проверяйте, что вы запускаете.
[project]
requires-python = ">=3.11"
dependencies = [
"requests<3",
]
"""
import requests
resp = requests.get("https://peps.python.org/api/peps.json")
print(resp.json())
#pep
Python Enhancement Proposals (PEPs)
PEP 723 – Inline script metadata | peps.python.org
This PEP specifies a metadata format that can be embedded in single-file Python scripts to assist launchers, IDEs and other external tools which may need to interact with such scripts.
Forwarded from Коробка с питоном
Недавно мой знакомый @nesclass (можете ему писать по теме доклада) выступал c докладом "Асинхронное варение MongoDB в Python" на Pytup.
Автор объяснил наглядно в чем различие реляционных баз от документно-ориентированных, немного рассказал про подходы работы с БД, затронул тему object mapper'ов и много рассказал про Beanie - ODM для работы с MongoDB (про которую я писал) и саму монгу.
Доклад отлично подойдет для тех, кто хочет ознакомиться с этим инструментом и послушать про подводные камни, с которыми часто встречаются новички.
#посмотреть
Автор объяснил наглядно в чем различие реляционных баз от документно-ориентированных, немного рассказал про подходы работы с БД, затронул тему object mapper'ов и много рассказал про Beanie - ODM для работы с MongoDB (про которую я писал) и саму монгу.
Доклад отлично подойдет для тех, кто хочет ознакомиться с этим инструментом и послушать про подводные камни, с которыми часто встречаются новички.
#посмотреть
YouTube
Асинхронное варение MongoDB в Python - Даниил Неслуховский, старший разработчик, Элитриум
Forwarded from Коробка с питоном
Если вам приходилось работать с bash, например парсить логи, вы наверняка видели или использовали команды следующего вида:
Символ
В Elixir есть оператор конвейера
Согласитесь, так удобнее работать с коллекциями, особенно там где данных много и их хочется как-то отфильтровать. В случае использования конвейеров нам больше не надо строить громоздкие циклы, а код прост и понятен.
Если вам интересно. как можно сделать такое в Python, то для вас есть библиотека Pipe. Реализация очень простая - библиотека добавляет класс Pipe который переопределяет оператор
Например, вот так мы можем получить сумму товаров, цена которых больше тысячи:
cat app.log | grep 'exception' | awk '{ print $2 }'
Здесь мы последовательно считываем содержимое файла app.log
, фильтруем по подстроке exception
и выводим вторую колонку. Символ
|
, которая разделяет команды называется "пайпом" - он перенаправляет вывод из одной команды в другую, а вся эта конструкция в целом называется конвейером, и она очень часто используется в функциональном программировании.В Elixir есть оператор конвейера
|>
который позволяет передавать результат выполнения левого выражения в правое. Это позволяет делать вот такие штуки:1..10Здесь мы генерируем список от 1 до 10, умножаем каждый элемент на 2 и фильтруем только те, которые больше 10.
|> Enum.map(fn x -> x * 2 end)
|> Enum.filter(fn x -> x > 10 end)
[12, 14, 16, 18, 20]
Согласитесь, так удобнее работать с коллекциями, особенно там где данных много и их хочется как-то отфильтровать. В случае использования конвейеров нам больше не надо строить громоздкие циклы, а код прост и понятен.
Если вам интересно. как можно сделать такое в Python, то для вас есть библиотека Pipe. Реализация очень простая - библиотека добавляет класс Pipe который переопределяет оператор
|
. Далее мы оборачиваем наши функции в этот класс и можем строить конвейеры!Например, вот так мы можем получить сумму товаров, цена которых больше тысячи:
from typing import NamedTuple
from pipe import select, where
class Product(NamedTuple):
name: str
price: int
products = [Product("choco", 123), Product("auto", 10000), Product("photo", 1200)]
sum(
products
| select(lambda product: product.price)
| where(lambda x: x > 1000)
) # 11200
#библиотекаGitHub
GitHub - JulienPalard/Pipe: A Python library to use infix notation in Python
A Python library to use infix notation in Python. Contribute to JulienPalard/Pipe development by creating an account on GitHub.
Forwarded from Коробка с питоном
На второе октября намечен релиз Python 3.12, поэтому Никита Соболев (opensource разработчик и контрибьютор в сpython) рассказывает про новинки в новой версии и чуть затрагивает то, что ожидает нас в 3.13.
Рекомендую посмотреть, чтобы оставаться в теме новых обновлений.
#посмотреть
Рекомендую посмотреть, чтобы оставаться в теме новых обновлений.
#посмотреть
YouTube
«Новинки в Python 3.12 и даже немного про 3.13», Никита Соболев
«Окей, Никита, что нового в Python?»
Еще одни спикер #GPDays2023 Никита Соболев – Open Source разработчик и любитель Python рассказал о чистке stdlib, PEP 695, новом синтаксисе для типизации, а также uops из Python 3.13:
01:19 Что нового в новом Python…
Еще одни спикер #GPDays2023 Никита Соболев – Open Source разработчик и любитель Python рассказал о чистке stdlib, PEP 695, новом синтаксисе для типизации, а также uops из Python 3.13:
01:19 Что нового в новом Python…
Forwarded from Коробка с питоном
Пока я спал, руководящий совет языка принял PEP 703 (Making the Global Interpreter Lock Optional in CPython).
Кратко о том, о чём говорится в посте:
1. Руководящему совету ясно, что несмотря на все проблемы и недостатки потоков, nogil будет полезен для Python, так как позволит находить более масштабируемые решения.
2. В то же время, они не уверены, получится ли убрать GIL не сломав при этом обратную совместимость - всё же не хотелось бы терять десятилетия развития базы пакетов. Существующая пакетная экосистема - это одна из сильных сторон языка, как и простая интеграция библиотек на C c CPython.
3. Оценить влияние nogil без реализации сложно, поэтому nogil должен выпускаться в составе регулярных релизов и не обязательно он там должен быть по-умолчанию.
4. Это всё ещё не гарантированная история. Если что-то пойдет не так - от изменений откажутся. Развёртывание должно быть постепенным и наиболее плавным.
5. Выкатка будет происходить в 3 фазы, которые возможно изменятся:
- В первой фазе nogil сделают возможным таргетом при сборке, чтобы разработчики могли тестировать свои пакеты.
- Во второй фазе, когда изменения в API и ABI будут сформированы, а поддержка nogil от сообщества будет достаточной, nogil-сборку добавлят как "поддерживаемую, но не по умолчанию".
- В третьей фазе nogil-сборку сделают сборкой "по-умолчанию", а от gil-сборки будут отказываться.
6. При успешной реализации nogil, ожидается падение производительности на 10-15% в худшем случае.
#pep
Кратко о том, о чём говорится в посте:
1. Руководящему совету ясно, что несмотря на все проблемы и недостатки потоков, nogil будет полезен для Python, так как позволит находить более масштабируемые решения.
2. В то же время, они не уверены, получится ли убрать GIL не сломав при этом обратную совместимость - всё же не хотелось бы терять десятилетия развития базы пакетов. Существующая пакетная экосистема - это одна из сильных сторон языка, как и простая интеграция библиотек на C c CPython.
3. Оценить влияние nogil без реализации сложно, поэтому nogil должен выпускаться в составе регулярных релизов и не обязательно он там должен быть по-умолчанию.
4. Это всё ещё не гарантированная история. Если что-то пойдет не так - от изменений откажутся. Развёртывание должно быть постепенным и наиболее плавным.
5. Выкатка будет происходить в 3 фазы, которые возможно изменятся:
- В первой фазе nogil сделают возможным таргетом при сборке, чтобы разработчики могли тестировать свои пакеты.
- Во второй фазе, когда изменения в API и ABI будут сформированы, а поддержка nogil от сообщества будет достаточной, nogil-сборку добавлят как "поддерживаемую, но не по умолчанию".
- В третьей фазе nogil-сборку сделают сборкой "по-умолчанию", а от gil-сборки будут отказываться.
6. При успешной реализации nogil, ожидается падение производительности на 10-15% в худшем случае.
#pep
Discussions on Python.org
PEP 703 (Making the Global Interpreter Lock Optional in CPython) acceptance
(Posted for the whole Steering Council.) As we’ve announced before, the Steering Council has decided to accept PEP 703 (Making the Global Interpreter Lock Optional in CPython) . We want to make it clear why, and under what expectations we’re doing so. It…
Forwarded from Коробка с питоном
На сегодня расскажу ещё пару рецептов с
1)
2) Получить последний элемент можно при помощи
Ещё есть
3)
4) Ну и в конце про
#itertools #more_itertools #библиотека
more_itertools
.1)
map_if
работает как обычный map
, но применяет функцию на элемент только если оно попадает под условие. Например, вот так мы можем возвести в квадрат только те числа, которые делятся на 2 нацело:example = [1, 2, 3, 4, 5, 6, 7, 8]
list(map_if(example, lambda x: x % 2 == 0, lambda x: x * x)) # [1, 4, 3, 16, 5, 36, 7, 64]
2) Получить последний элемент можно при помощи
last
. Возникает вопрос а зачем он существует, если можно указать sequence[-1]
? Ответом является то, что last
позволяет указать, что ему возвращать, если элементов в коллекции нет:last([1, 2, 3]) # Очевидно получим 3
last([], 0) # Список пустой, но получим 0
[][-1] # Получим IndexError
Ещё есть
first
- как понятно из названия, он получает первый элемент.3)
map_except
тоже работает как map
, но умеет игнорировать ошибки. Например, мы хотим получить только те элементы, которые получилось привести к целому числу:example = [1, "1", "2", "test", "three", object, 4.0]
list(map_except(int, example, ValueError, TypeError)) # [1, 1, 2, 4]
4) Ну и в конце про
take
- он просто берет N элементов из итерируемого объекта:example = range(10)
take(3, example) # [0, 1, 2]
take(20, example) # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] - если больше, возьмет доступные
#itertools #more_itertools #библиотека
Forwarded from Питонические атаки
PSF и JetBrains запустили своё ежегодное исследование Python Developers Survey 2023. Погнали заполнять! 👇
https://survey.alchemer.com/s3/7554174/python-developers-survey-2023
Через год, когда подведут результаты, будет повод написать пост, типа такого 😅
https://survey.alchemer.com/s3/7554174/python-developers-survey-2023
Через год, когда подведут результаты, будет повод написать пост, типа такого 😅
Alchemer
Python Developers Survey 2023
The official Python Developers Survey 2023. Join and contribute to the community knowledge!
Forwarded from Николай Хитров | Блог
Да, у нас есть тесты. А толку?
Супер-мега-гига экслюзивный доступ к записи моего доклада с прошедшего PiterPy. Организаторы разрешили выложить не дожидаясь следующего года. Получилось как всегда холиварно, не всё всем может понравиться, но как минимум советую присмотреться к библиотечкам и статьям/докладам из полезных ссылок. Там немного, но самое годное из того что знаю по этой теме. Куда кидать помидоры и звездочки вы знаете 🙂🙃
https://youtu.be/liECQCFGfkE
Супер-мега-гига экслюзивный доступ к записи моего доклада с прошедшего PiterPy. Организаторы разрешили выложить не дожидаясь следующего года. Получилось как всегда холиварно, не всё всем может понравиться, но как минимум советую присмотреться к библиотечкам и статьям/докладам из полезных ссылок. Там немного, но самое годное из того что знаю по этой теме. Куда кидать помидоры и звездочки вы знаете 🙂🙃
https://youtu.be/liECQCFGfkE
YouTube
Николай Хитров — Да, у нас есть тесты. А толку?
Ближайшая конференция — PiterPy 2025, 16—17 мая, Санкт-Петербург + online.
Подробности и билеты: https://jrg.su/QZ6wK1
— —
Скачать презентацию с сайта PiterPy — https://jrg.su/eCB2vc
Кандидаты часто спрашивают на собеседованиях, принято ли в команде писать…
Подробности и билеты: https://jrg.su/QZ6wK1
— —
Скачать презентацию с сайта PiterPy — https://jrg.su/eCB2vc
Кандидаты часто спрашивают на собеседованиях, принято ли в команде писать…
Forwarded from Коробка с питоном
Решил расширить канал ещё одной тематикой - занимательными задачками.
Пока что буду писать про те, которые встречались на тех. собеседованиях.Они не всегда будут адекватные, но что уж есть :)
А начнём, как полагается с классики. Надо объяснить следующее поведение:
Вопрос в том, что здесь творится с ссылками. Разберём самую первую часть. Пробуем получить id объектов:
На вопрос, почему у них одинаковые идентификаторы ответит деталь реализации PyLong_FromLong(для искушенных читать можно читать отсюда ) , которая указывает, что интерпретатор хранит массив целочисленных объектов для всех чисел в диапазоне от -5 до 256. Поэтому, когда мы создаем переменную с числом в этом диапазоне он просто отдает ссылку на уже существующий объект.
Микрооптимизация, при чём очень важная - так уж получилось что числа из этого диапазона используются чаще всего.
В Java есть похожая оптимизация, там такой диапазон составляет от -128 до 127, но есть нюансы .
Второй вопрос отпадает сам собой (будут разные ссылки), но что будет если мы создадим файл с следующим содержимым и запустим его:
А вот это уже нюанс работы нашего REPL.
Каждая написанная нами строка в нём разбирается отдельно. Но при запуске через файл Python имеет возможность применить дополнительные оптимизации для констант, так как он видит сразу весь код - в этом и различие.
А какие ещё неочевидные моменты вы знаете с REPL или int'ами? Пишите в комменты, обсудим :)
#std #задачки
Пока что буду писать про те, которые встречались на тех. собеседованиях.
А начнём, как полагается с классики. Надо объяснить следующее поведение:
>>> a = 256
>>> b = 256
>>> a is b
True # ???
>>> a = 257
>>> b = 257
>>> a is b
False # ???
Вопрос в том, что здесь творится с ссылками. Разберём самую первую часть. Пробуем получить id объектов:
>>> a = 256
>>> b = 256
>>> id(a), id(b)
(2214170730704, 2214170730704)
На вопрос, почему у них одинаковые идентификаторы ответит деталь реализации PyLong_FromLong
Микрооптимизация, при чём очень важная - так уж получилось что числа из этого диапазона используются чаще всего.
Второй вопрос отпадает сам собой (будут разные ссылки), но что будет если мы создадим файл с следующим содержимым и запустим его:
a = 257
b = 257
print(a is b) # True
А вот это уже нюанс работы нашего REPL.
Каждая написанная нами строка в нём разбирается отдельно. Но при запуске через файл Python имеет возможность применить дополнительные оптимизации для констант, так как он видит сразу весь код - в этом и различие.
А какие ещё неочевидные моменты вы знаете с REPL или int'ами? Пишите в комменты, обсудим :)
#std #задачки
Python documentation
Integer Objects
All integers are implemented as “long” integer objects of arbitrary size. On error, most PyLong_As* APIs return(return type)-1 which cannot be distinguished from a number. Use PyErr_Occurred() to d...
Forwarded from Коробка с питоном
Сегодня у нас простенькая задачка, а то пятница, все отдыхать хотят, я понимаю.
Есть следующий код:
Вопрос - что вернется при вызове(ну не просто так же мы собрались, верно?) , но почему?
Ответ, как обычно, есть в документации. Возвращаемое функцией значение определяется последним выполненным return.
Вторым важным аспектом является то, что finally исполняется всегда, поэтому мы и получаем его return.
#std #задачки
Есть следующий код:
def test():
try:
return 1
finally:
return 2
Вопрос - что вернется при вызове
test()
? Все и так на этом моменте понимают, что вернётся 2 Ответ, как обычно, есть в документации. Возвращаемое функцией значение определяется последним выполненным return.
Вторым важным аспектом является то, что finally исполняется всегда, поэтому мы и получаем его return.
raise
, кстати, тоже работать не будет:def test():
try:
raise ValueError()
finally:
return 3
test() # 3
#std #задачки
Python documentation
8. Errors and Exceptions
Until now error messages haven’t been more than mentioned, but if you have tried out the examples you have probably seen some. There are (at least) two distinguishable kinds of errors: syntax error...
Forwarded from Коробка с питоном
С наступившим 2024 вас! Сегодня расскажу про dirty-equals.
Этот пакет используется для реализации более читаемых и декларативных проверок на равенство/соответствие, но в полной мере он себя раскрывает при написании тестов.
Как обычно, приведу несколько примеров:
Рекомендую заглянуть в документацию, там таких удобных штук ещё очень много! Ну и изучите исходники - написано не сложно, под капотом используется чуток метаклассов, для изучения темы - самое то!
#библиотека
Этот пакет используется для реализации более читаемых и декларативных проверок на равенство/соответствие, но в полной мере он себя раскрывает при написании тестов.
Как обычно, приведу несколько примеров:
from dirty_equals import *
>>> assert 1 == IsPositive # Всё ок, число положительное
>>> assert -2 == IsPositive # AssertionError
>>> # Проверки можно комбинировать при помощи булевой логики
>>> assert ['a', 'b', 'c'] == HasLen(3) & Contains('a') # Ок, список на 3 элемента, содержит 'a'
>>> # Есть проверка словарей
>>> assert {'a': 1, 'b': 2} == IsDict(a=1, b=2)
>>> # Словари можно проверять частично
>>> assert {'a': 1, 'b': 2, 'c': 3} == IsDict(a=1, b=2).settings(partial=True)
>>> # Или вот так
>>> assert {'a': 1, 'b': 2, 'c': 3} == IsPartialDict(a=1, b=2)
>>> Можно проверять соответствие регуляркам
>>> assert 'test@kiriha.ru' == IsStr(regex=r'^[^@]+@[^@]+\.[^@]+$')
>>> # И так далее...
Рекомендую заглянуть в документацию, там таких удобных штук ещё очень много! Ну и изучите исходники - написано не сложно, под капотом используется чуток метаклассов, для изучения темы - самое то!
#библиотека
Forwarded from Николай Хитров | Блог
Тренажер по тайпингу в Python для самых маленьких (и не только)
Для некоторых задач доступны подсказки со ссылками на документацию.
Проверить свои знания по типам сюда
Посмотреть исходный код сюда
Python Type Challenges
, очень прикольный сайт-тренажер для изучения типизации. Выбираешь тему, дописываешь необходимые куски кода и запускаешь проверку линтером. Почти как олимпиадные задачки, только полезные😁Для некоторых задач доступны подсказки со ссылками на документацию.
Проверить свои знания по типам сюда
Посмотреть исходный код сюда
Forwarded from Коробка с питоном
Если у вас есть желание понять как работает asyncio, threading или multiprocessing, либо же появились вопросы - рекомендую обратить внимание на superfastpython.com
Автор понятным языком рассказывает про доступные формы параллелизма и где какую можно применить. Для совсем начинающих он сделал "пути обучения", где раскиданы темы по каждой из форм.
Для особо искушенных автор продает книги по разным темам, но как по мне они в какой-то мере повторяют бесплатный материал, который уже есть на сайте.
Практически каждая статья сопровождается реальными примерами, которые можно самому запустить.
Все материалы на английском, но некоторые из них переводит на русский комьюнити (например цикл статей про asyncio).
#asyncio #threading #multiprocessing #статья
Автор понятным языком рассказывает про доступные формы параллелизма и где какую можно применить. Для совсем начинающих он сделал "пути обучения", где раскиданы темы по каждой из форм.
Для особо искушенных автор продает книги по разным темам, но как по мне они в какой-то мере повторяют бесплатный материал, который уже есть на сайте.
Практически каждая статья сопровождается реальными примерами, которые можно самому запустить.
Все материалы на английском, но некоторые из них переводит на русский комьюнити (например цикл статей про asyncio).
#asyncio #threading #multiprocessing #статья
Super Fast Python
Home - Super Fast Python
Master Python concurrency super fast. Learn threading, multiprocessing, and asyncio with step-by-step books and code tutorials.
Forwarded from Коробка с питоном
Создание временных файлов
В процессе написания скрипта может потребоваться создание временных файлов, которые будут удалены автоматически после завершения работы скрипта или обработки файла.
Это может быть полезно по разным причинам - при обработке больших данных (которые не вместятся в буфер) или при проведении сложных операций (например, можно создать временный файл и натравить на него ffmpeg).
Для решения этих проблем в Python есть модуль
В процессе написания скрипта может потребоваться создание временных файлов, которые будут удалены автоматически после завершения работы скрипта или обработки файла.
Это может быть полезно по разным причинам - при обработке больших данных (которые не вместятся в буфер) или при проведении сложных операций (например, можно создать временный файл и натравить на него ffmpeg).
Для решения этих проблем в Python есть модуль
tempfile
. Нас интересует 2 функции - это TemporaryFile
и NamedTemporaryFile
.TemporaryFile
позволяет создать безымянный временный файл. Вот так можно создать временный текстовой файл, открыть его на запись и чтение (за это отвечает первый аргумент "w+t"
, подробнее можно прочитать здесь):from tempfile import TemporaryFile
with TemporaryFile("w+t") as t:
t.write("Hello, boxwithpython!")
t.seek(0)
data = t.read()
NamedTemporaryFile
используется для более продвинутых сценариев, так как он создает файл с именем, поэтому мы можем получить путь к нему и использовать его для дальнейших целей:from tempfile import
NamedTemporaryFile
with NamedTemporaryFile("w+t") as t:#std
t.write("Hello, boxwithpython!")
print(t.name) # /tmp/tmpljhsktjt
Forwarded from Коробка с питоном
Про __slots__
Python, аналогично другим динамическим языкам, таким как JavaScript, предоставляет возможность манипулирования объектами в рантайме, в том числе позволяет добавлять, изменять и удалять атрибуты. Цена этого – понижение скорости доступа к атрибутам и дополнительные расходы памяти.
Такое поведение нужно не всегда. Бывают случаи, когда мы точно знаем, какие атрибуты будут у наших экземпляров классов. Или же мы хотим ограничить добавление новых атрибутов. Именно для этого и существует
Слоты задаются через атрибут
В свою очередь, память экономится из-за того, что у класса не создается
#std #slots
Python, аналогично другим динамическим языкам, таким как JavaScript, предоставляет возможность манипулирования объектами в рантайме, в том числе позволяет добавлять, изменять и удалять атрибуты. Цена этого – понижение скорости доступа к атрибутам и дополнительные расходы памяти.
Такое поведение нужно не всегда. Бывают случаи, когда мы точно знаем, какие атрибуты будут у наших экземпляров классов. Или же мы хотим ограничить добавление новых атрибутов. Именно для этого и существует
__slots__
.Слоты задаются через атрибут
__slots__
в классе:class SlotsClass:Теперь мы не можем добавлять новые атрибуты к нашим объектам. Скорость доступа к атрибутам повышается на 25-30%, потому что при доступе к ним их больше не надо вычислять.
slots = ('foo', 'bar')
>>> obj = SlotsClass()
>>> obj.foo = 5
>>> obj.foo
# 5
>>> obj.another_attribute = 'test'
Traceback (most recent call last):
File "python", line 5, in <module>
AttributeError: 'SlotsClass' object has no attribute 'another_attribute'
В свою очередь, память экономится из-за того, что у класса не создается
__dict__
, который как раз хранил атрибуты.#std #slots
Forwarded from Коробка с питоном
#python python... PYTHON 🔛 🚀
Про __slots__ Python, аналогично другим динамическим языкам, таким как JavaScript, предоставляет возможность манипулирования объектами в рантайме, в том числе позволяет добавлять, изменять и удалять атрибуты. Цена этого – понижение скорости доступа к атрибутам…
__slots__ и наследование
Важно помнить, что при попытке унаследовать класс с
Из-за этого возникает неоднозначность, какой именно слот использовать в результирующем классе.
#std #slots
Важно помнить, что при попытке унаследовать класс с
__slots__
подкласс их унаследует, но так же и создаст __dict__
для новых атрибутов:class SlotsClass:Это стандартное и понятное поведение. Чтобы избежать создания
__slots__ = ('foo', 'bar')
class ChildSlotsClass(SlotsClass):
pass
>>> obj = ChildSlotsClass()
>>> obj.__slots__
# ('foo', 'bar')
>>> obj.foo = 5
>>> obj.test = 3
>>> obj.__dict__
# {'test': 3}
__dict__
, можно снова переопределить __slots__
в подклассе:class SlotsClass:А что с множественным наследованием?
__slots__ = ('foo', 'bar')
class ChildSlotsClass(SlotsClass):
__slots__ = ('baz',)
>>> obj = ChildSlotsClass()
>>> obj.foo = 5
>>> obj.baz = 6
>>> obj.something_new = 3
AttributeError: 'ChildSlotsClass' object has no attribute 'something_new'
class ClassA:Оно не работает. Потому-что каждый класс может иметь свои собственные
__slots__ = ('foo', 'bar',)
class ClassB:
__slots__ = ('baz',)
class C(ClassA, ClassB):
pass
TypeError: multiple bases have instance lay-out conflict
__slots__
, которые могут пересекаться с другими классами, а это может привести к тому, что объекты могут быть созданы неправильно или будут иметь непредсказуемое поведение. Из-за этого возникает неоднозначность, какой именно слот использовать в результирующем классе.
#std #slots