Python | Вопросы собесов
13.9K subscribers
39 photos
1 file
931 links
Cайт: easyoffer.ru
Реклама: @easyoffer_adv
ВП: @easyoffer_vp

Тесты t.me/+20tRfhrwPpM4NDQy
Задачи t.me/+nsl4meWmhfQwNDVi
Вакансии t.me/+cXGKkrOY2-w3ZTky
Download Telegram
🤔 Что такое `args`?

Это сокращение для передачи произвольного количества позиционных аргументов в функцию.
1. Указывается как *args в объявлении функции.
2. Позволяет обрабатывать переменное количество аргументов в виде кортежа.


Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥9👍8💊1
🤔 Расскажи о методе bool?

Метод __bool__ является специальным методом, который позволяет определить, как объект будет оцениваться в логическом контексте. Этот метод должен возвращать булево значение (True или False), которое указывает на истинность или ложность объекта.

🚩Основное предназначение

Используется для реализации логического поведения объектов при использовании встроенной функции bool() и в условиях (например, в инструкциях if и while). Если объект не имеет метода bool, Python вызывает метод len, и если len возвращает ноль, объект считается ложным.
class Box:
def __init__(self, items):
self.items = items

def __bool__(self):
return bool(self.items)

def __repr__(self):
return f"Box({self.items})"

# Использование
box1 = Box([1, 2, 3])
box2 = Box([])

print(bool(box1)) # Вывод: True
print(bool(box2)) # Вывод: False

if box1:
print("box1 is not empty") # Вывод: box1 is not empty

if not box2:
print("box2 is empty") # Вывод: box2 is empty


🚩Использование метода len для логического контекста

Если метод bool не определён, Python использует метод len для определения логического значения объекта. Если метод len возвращает 0, объект считается ложным, в противном случае — истинным.
class Box:
def __init__(self, items):
self.items = items

def __len__(self):
return len(self.items)

def __repr__(self):
return f"Box({self.items})"

# Использование
box1 = Box([1, 2, 3])
box2 = Box([])

print(bool(box1)) # Вывод: True
print(bool(box2)) # Вывод: False

if box1:
print("box1 is not empty") # Вывод: box1 is not empty

if not box2:
print("box2 is empty") # Вывод: box2 is empty


Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍13
🤔 Что такое `kwargs`?

Это способ передачи произвольного количества именованных аргументов.
1. Указывается как **kwargs в объявлении функции.
2. Аргументы передаются в виде словаря.


Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍27🔥62🤯1💊1
🤔 Расскажи о методах eq, ne, lt, le, qt, qe?

Методы eq, ne, lt, le, gt, и ge являются специальными методами, которые позволяют определять, как объекты пользовательских классов будут сравниваться друг с другом. Эти методы обеспечивают перегрузку операторов сравнения, таких как ==, !=, <, <=, >, и >=.

🟠Метод eq
Используется для перегрузки оператора равенства (==). Он вызывается, когда нужно проверить, равны ли два объекта.
class Person:
def __init__(self, name, age):
self.name = name
self.age = age

def __eq__(self, other):
if isinstance(other, Person):
return self.name == other.name and self.age == other.age
return False

# Использование
p1 = Person("Alice", 30)
p2 = Person("Alice", 30)
p3 = Person("Bob", 25)

print(p1 == p2) # Вывод: True
print(p1 == p3) # Вывод: False


🟠Метод name, age
Используется для перегрузки оператора неравенства (!=). Он вызывается, когда нужно проверить, не равны ли два объекта.
class Person:
def __init__(self, name, age):
self.name = name
self.age = age

def __ne__(self, other):
if isinstance(other, Person):
return self.name != other.name or self.age != other.age
return True

# Использование
p1 = Person("Alice", 30)
p2 = Person("Alice", 30)
p3 = Person("Bob", 25)

print(p1 != p2) # Вывод: False
print(p1 != p3) # Вывод: True


🟠Метод age
Используется для перегрузки оператора "меньше чем" (<). Он вызывается, когда нужно проверить, меньше ли один объект другого.
class Person:
def __init__(self, name, age):
self.name = name
self.age = age

def __lt__(self, other):
if isinstance(other, Person):
return self.age < other.age
return NotImplemented

# Использование
p1 = Person("Alice", 30)
p2 = Person("Bob", 25)

print(p1 < p2) # Вывод: False
print(p2 < p1) # Вывод: True


🟠Метод ass
Используется для перегрузки оператора "меньше или равно" (<=). Он вызывается, когда нужно проверить, меньше ли или равен один объект другому.
class Person:
def __init__(self, name, age):
self.name = name
self.age = age

def __le__(self, other):
if isinstance(other, Person):
return self.age <= other.age
return NotImplemented

# Использование
p1 = Person("Alice", 30)
p2 = Person("Bob", 25)
p3 = Person("Charlie", 30)

print(p1 <= p2) # Вывод: False
print(p2 <= p1) # Вывод: True
print(p1 <= p3) # Вывод: True


Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5💊32
🤔 Что такое аннотации типов?

Это синтаксис для указания типов данных переменных, аргументов и возвращаемого значения функции.
Они служат для повышения читаемости кода и статической проверки типов, но не влияют на выполнение.


Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍17
🤔 Какие есть методы у классов ?

Классы могут содержать различные виды методов, которые определяют поведение объектов и взаимодействие с ними.

🟠Обычные методы (Instance Methods)
Работают с экземплярами класса и могут изменять состояние объекта. Они принимают как первый аргумент self, который ссылается на экземпляр класса.
class MyClass:
def __init__(self, value):
self.value = value

def increment(self):
self.value += 1

# Использование
obj = MyClass(10)
obj.increment()
print(obj.value) # Вывод: 11


🟠Методы класса (Class Methods)
Работают с самим классом, а не с экземплярами. Они принимают как первый аргумент cls, который ссылается на класс. Методы класса обозначаются декоратором @classmethod.
class MyClass:
count = 0

def __init__(self):
MyClass.count += 1

@classmethod
def get_count(cls):
return cls.count

# Использование
obj1 = MyClass()
obj2 = MyClass()
print(MyClass.get_count()) # Вывод: 2


🟠Статические методы (Static Methods)
Не зависят ни от экземпляра класса, ни от самого класса. Они не принимают self или cls в качестве первого аргумента. Статические методы обозначаются декоратором @staticmethod.
class MyClass:
@staticmethod
def greet(name):
return f"Hello, {name}!"

# Использование
print(MyClass.greet("Alice")) # Вывод: Hello, Alice!


🚩Специальные методы (Special Methods или Magic Methods)

Специальные методы определяют поведение объектов при использовании встроенных функций и операций. Они включают такие методы, как init, str, repr, len, getitem, setitem, delitem, call, enter, exit, и многие другие.

🟠init
Конструктор класса, вызываемый при создании нового экземпляра.
        class MyClass:
def init(self, value):
self.value = value

obj = MyClass(10)



🟠str
Определяет строковое представление объекта для функции str() и оператора print.
        class MyClass:
def init(self, value):
self.value = value

def str(self):
return f"MyClass with value: {self.value}"

obj = MyClass(10)
print(obj) # Вывод: MyClass with value: 10


🟠__getitem__, __setitem__, __delitem__
Определяют поведение объекта при доступе к элементам по индексу (для коллекций).
    class MyList:
def __init__(self, items):
self.items = items

def __getitem__(self, index):
return self.items[index]

def __setitem__(self, index, value):
self.items[index] = value

def __delitem__(self, index):
del self.items[index]

lst = MyList([1, 2, 3])
print(lst[1]) # Вывод: 2
lst[1] = 20
print(lst[1]) # Вывод: 20
del lst[1]
print(lst.items) # Вывод: [1, 3]


🟠
__enter__, __exit__
Определяют поведение объекта в контексте оператора with.
    ```python
class ManagedResource:
def enter(self):
print("Entering the context")
return self

def exit(self, exc_type, exc_value, traceback):
print("Exiting the context")
return False

with ManagedResource():
print("Inside the context")


Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍91🔥1
🤔 Что такое глубокая копия?

Глубокая копия (deep copy) создаёт новый объект и рекурсивно копирует все вложенные объекты.
Используется, чтобы избежать изменения оригинала при работе с вложенными структурами данных.


Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥18👍8
🤔 Как отсортировать список словарей по определенному полю?

Для сортировки списка словарей по определенному полю в Python удобно использовать функцию sorted() или метод sort(). Оба подхода позволяют указать ключ сортировки с помощью параметра key, где можно передать либо функцию, либо лямбда-выражение, которое извлекает значение из словаря для сортировки.

🚩Почему это важно?

Списки словарей часто используются для хранения структурированных данных. Например, вы можете иметь список сотрудников, где каждый сотрудник представлен в виде словаря с полями, такими как имя, возраст и зарплата. Сортировка по определенному полю позволяет упорядочить данные, чтобы ими было проще пользоваться или отображать.

🚩Как это сделать?

🟠Использование функции `sorted()`
Эта функция возвращает новый отсортированный список.
   employees = [
{"name": "Alice", "age": 30, "salary": 70000},
{"name": "Bob", "age": 25, "salary": 50000},
{"name": "Charlie", "age": 35, "salary": 120000}
]

# Сортировка по возрасту
sorted_employees = sorted(employees, key=lambda x: x["age"])

print(sorted_employees)


Результат
   [{'name': 'Bob', 'age': 25, 'salary': 50000},
{'name': 'Alice', 'age': 30, 'salary': 70000},
{'name': 'Charlie', 'age': 35, 'salary': 120000}]


🟠Использование метода `sort()`
Этот метод изменяет существующий список.
   employees = [
{"name": "Alice", "age": 30, "salary": 70000},
{"name": "Bob", "age": 25, "salary": 50000},
{"name": "Charlie", "age": 35, "salary": 120000}
]

# Сортировка по зарплате
employees.sort(key=lambda x: x["salary"])

print(employees)


Результат
   [{'name': 'Bob', 'age': 25, 'salary': 50000},
{'name': 'Alice', 'age': 30, 'salary': 70000},
{'name': 'Charlie', 'age': 35, 'salary': 120000}]


🟠Сортировка в обратном порядке
Установите параметр reverse=True, чтобы отсортировать в порядке убывания.
   sorted_employees_desc = sorted(employees, key=lambda x: x["age"], reverse=True)
print(sorted_employees_desc)


🟠Использование функции `itemgetter` из модуля `operator`
Это более эффективный способ, чем лямбда-функция, особенно для больших данных.
   from operator import itemgetter

sorted_employees = sorted(employees, key=itemgetter("age"))
print(sorted_employees)


🚩Обработка отсутствующих значений

Если поле может отсутствовать в некоторых словарях, можно использовать параметр key для обработки таких ситуаций.
employees = [
{"name": "Alice", "age": 30},
{"name": "Bob"},
{"name": "Charlie", "age": 35}
]

sorted_employees = sorted(employees, key=lambda x: x.get("age", 0))
print(sorted_employees)


Результат
[{'name': 'Bob'},
{'name': 'Alice', 'age': 30},
{'name': 'Charlie', 'age': 35}]


Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍14
🤔 Что такое поверхностная копия?

Поверхностная копия (shallow copy) создаёт новый объект, но копирует ссылки на вложенные объекты.
Изменение вложенных данных в копии отразится на оригинале.


Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍8🔥4
🤔 Чем асинхронность отличается от многопоточности?

Это два подхода, которые используются для выполнения нескольких задач одновременно или для улучшения производительности. Однако они имеют разные концепции, способы реализации и области применения.

🚩Асинхронность

Это способ организации кода, при котором задачи, занимающие много времени (например, ввод/вывод, запросы к базе данных или сетевые операции), не блокируют выполнение остальных частей программы. Основная идея асинхронности заключается в том, чтобы не ждать завершения одной операции перед началом следующей.

🟠Использует один поток
Асинхронный код работает в основном потоке программы и переключается между задачами, когда одна из них ожидает завершения (например, чтения данных из сети).

🟠Ожидание через "event loop"
Асинхронный подход использует цикл событий (event loop), который управляет выполнением задач. Если задача блокируется, цикл событий переключается на следующую задачу.

🟠Неблокирующий ввод/вывод
Асинхронный код не простаивает в ожидании завершения операций ввода/вывода (I/O). Вместо этого такие операции сигнализируют о завершении через "обещание" (например, Future или asyncio.Task).

import asyncio

async def fetch_data():
print("Начинаем загрузку данных...")
await asyncio.sleep(2) # Асинхронная пауза (имитирует длительную операцию)
print("Данные загружены!")
return {"data": "some data"}

async def main():
print("Старт программы")
data = await fetch_data()
print(f"Результат: {data}")
print("Конец программы")

# Запуск цикла событий
asyncio.run(main())


🚩Многопоточность
Это способ выполнения нескольких задач одновременно с использованием нескольких потоков. Потоки — это "легковесные" процессы, которые разделяют одну и ту же память, но могут выполняться независимо друг от друга.

🟠Несколько потоков
Программа создает несколько потоков, каждый из которых выполняет свою задачу.
🟠Параллельное выполнение
Если у процессора несколько ядер, потоки могут выполняться действительно параллельно.
🟠Блокирующий код
В отличие от асинхронного подхода, потоки часто блокируются в ожидании завершения операций (например, I/O).

import threading
import time

def task(name):
print(f"Начало задачи {name}")
time.sleep(2) # Имитация длительной операции
print(f"Конец задачи {name}")

# Создаем и запускаем потоки
thread1 = threading.Thread(target=task, args=("A",))
thread2 = threading.Thread(target=task, args=("B",))

thread1.start()
thread2.start()

# Ожидаем завершения потоков
thread1.join()
thread2.join()
print("Все задачи завершены")


Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍12
🤔 Что такое итерируемый объект?

Это объект, который можно перебрать с помощью цикла for.
1. Он должен реализовывать метод __iter__, возвращающий итератор.
2. Примеры: списки, строки, словари, множества.


Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍16🔥3
🤔 Зачем нужны классы BaseExceptionGroup и ExceptionGroup?

В Python 3.11 были добавлены новые классы исключений BaseExceptionGroup и ExceptionGroup. Эти классы решают проблему одновременной обработки нескольких исключений, которые могут возникать в сложных ситуациях, таких как асинхронное программирование, многопоточность или обработка нескольких связанных ошибок. Давайте разберем, зачем они нужны, как их использовать и какие преимущества они дают.

🚩Зачем нужны `BaseExceptionGroup` и `ExceptionGroup`?

Ранее в Python было возможно выбросить только одно исключение за раз, и обработка нескольких исключений одновременно требовала сложного и неочевидного кода. Например:
При работе с асинхронными функциями или потоками может возникнуть сразу несколько ошибок, и их нужно корректно обработать.
В больших приложениях или библиотеках (например, при работе с asyncio) может быть необходимость передать сразу несколько исключений, которые произошли в разных местах, как единый объект.
BaseExceptionGroup и его подкласс ExceptionGroup позволяют группировать несколько исключений и выбрасывать их вместе в виде одного объекта. Это делает код более читаемым, упрощает обработку и исключает необходимость ручной агрегации ошибок.

🚩Разница между `BaseExceptionGroup` и `ExceptionGroup`

BaseExceptionGroup - это базовый класс для группировки исключений. Он наследуется от BaseException и, как правило, не используется напрямую.
ExceptionGroup - это подкласс, который наследуется от Exception. Этот класс используется для обработки групп исключений, которые возникают при обычных ошибках в коде (не фатальных).

🚩Как они работают?

Классы исключений BaseExceptionGroup и ExceptionGroup позволяют создать "группу исключений", которая содержит несколько отдельных исключений. Это полезно, когда вам нужно:
Указать несколько ошибок одновременно.
Позволить обработчику исключений работать с каждым из них.
def task_1():
raise ValueError("Ошибка в задаче 1")

def task_2():
raise TypeError("Ошибка в задаче 2")

try:
# Создаем группу исключений
raise ExceptionGroup(
"Ошибки в задачах",
[ValueError("Ошибка в задаче 1"), TypeError("Ошибка в задаче 2")]
)
except ExceptionGroup as eg:
for exc in eg.exceptions:
print(f"Обнаружено исключение: {exc}")


Результат
Обнаружено исключение: Ошибка в задаче 1
Обнаружено исключение: Ошибка в задаче 2


🚩Обработка групп исключений

При обработке ExceptionGroup можно использовать механизм фильтрации с помощью конструкции except*. Это нововведение в Python 3.11 позволяет обрабатывать разные типы исключений внутри группы по-разному.
try:
raise ExceptionGroup(
"Ошибки в задачах",
[ValueError("Ошибка 1"), TypeError("Ошибка 2"), ValueError("Ошибка 3")]
)
except* ValueError as ve:
print("Обрабатываем ValueError:", ve)
except* TypeError as te:
print("Обрабатываем TypeError:", te)


Результат
Обрабатываем ValueError: Ошибка 1
Обрабатываем ValueError: Ошибка 3
Обрабатываем TypeError: Ошибка 2


🚩Преимущества использования

Работа с несколькими исключениями одновременно.
Вы можете объединить связанные ошибки и передать их в одном объекте.
Четкое разграничение типов исключений.
Использование except* позволяет обработать каждое исключение из группы отдельно, не теряя гибкости.
Удобство при асинхронном программировании.
В асинхронных задачах (asyncio) часто возникает несколько ошибок одновременно, и их можно группировать для дальнейшей обработки.
Упрощение сложной логики.
Код становится проще и понятнее, так как не нужно вручную собирать и разбирать исключения.

🚩Когда использовать?

Когда вы работаете с несколькими задачами, которые могут порождать ошибки одновременно (например, асинхронный код).
Когда вы хотите сообщить о нескольких связанных ошибках, не выбрасывая каждую из них отдельно.
Когда требуется раздельная обработка разных типов ошибок.

Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍13
🤔 В чем разница между `copy()` и `deepcopy()`?

1. copy() создаёт поверхностную копию, при которой вложенные объекты остаются общими с оригиналом.
2. deepcopy() создаёт глубокую копию, рекурсивно копируя все вложенные объекты.


Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍151🔥1
🤔 Что такое RESTful?

Это подход к проектированию веб-сервисов, основанный на архитектурном стиле REST (*Representational State Transfer*). Это не протокол или стандарт, а набор принципов и ограничений, которые используются для создания систем, взаимодействующих через HTTP. Если API соответствует этим принципам, его называют RESTful.

🚩 Основные принципы REST

🟠Клиент-серверная архитектура
Клиент (например, браузер или мобильное приложение) и сервер (где размещена база данных и логика обработки данных) чётко разделены:
Клиент запрашивает данные или отправляет запросы к серверу.
Сервер отвечает, предоставляя ресурсы или выполняя действия.

🟠Состояние отсутствия (Stateless)
Каждый запрос от клиента к серверу должен быть самодостаточным. Это означает, что сервер не хранит информацию о состоянии клиента между запросами. Вся необходимая информация передается в запросе (например, токен аутентификации).

🟠Унифицированный интерфейс
RESTful API использует единый, стандартный интерфейс для взаимодействия. Это достигается следующими средствами:
Идентификация ресурсов через URI: Каждый ресурс имеет уникальный адрес (URI).

GET https://api.example.com/users/123

Использование стандартных HTTP-методов:
GET — для получения данных.
POST — для создания новых данных.
PUT или PATCH — для обновления данных.
DELETE — для удаления данных.
Ресурсы как представления: Ресурсы передаются в формате JSON, XML или другом формате.

🟠Кэширование
Ответы сервера могут быть кэшируемыми. Это уменьшает нагрузку на сервер и ускоряет работу клиента.

🟠Единообразие и слои
RESTful системы могут включать несколько слоев (например, балансировщики нагрузки, кеш-сервисы), но клиент взаимодействует только с сервером, не зная о внутренних слоях.

🟠Код по требованию (опционально)
Иногда сервер может передавать исполняемый код (например, JavaScript) клиенту, чтобы расширить его функциональность. Это не обязательно.

🚩Почему RESTful важен?

RESTful архитектура позволяет:
🟠Сделать API простым и понятным
Клиенты легко понимают, как обращаться к ресурсам (используя стандартные методы и адреса).
🟠Обеспечить гибкость
Клиенты и серверы могут развиваться независимо друг от друга.
🟠Поддерживать масштабируемость
RESTful API легко масштабируются, так как все запросы независимы друг от друга (статичность).
🟠Облегчить интеграцию
RESTful API поддерживают стандартизированные протоколы (HTTP), что делает интеграцию с другими сервисами проще.

Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍12
🤔 В чем разница между процессом и потоком?

1. Процесс — это независимая единица выполнения с собственной памятью.
2. Поток — это часть процесса, использующая общую память с другими потоками того же процесса.
3. Потоки легче создаются, но менее изолированы, чем процессы.


Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥19👍6
🤔 Что можете сказать о конструкции import package.item?

Конструкция import package.item используется для импорта конкретного подмодуля или элемента из пакета в Python.

🚩Пакеты и Подмодули

Пакет — это каталог, который содержит файл __init__.py и может содержать подкаталоги и модули. Подкаталоги в пакете также могут содержать файлыия import py, что делает их под-пакетами. Пример структуры пакета:
package/


вероятность
py
item.py
subpackage/


Конструкции
py
subitem.py


🚩Импорт Подмодуля

Конструкция import package.item позволяет импортировать подмодуль item из пакета package. Например:
import package.item

# Теперь вы можете использовать функции и классы из package.item
package.item.some_function()


🚩Почему это важно?

🟠Организация кода
Пакеты позволяют структурировать код в иерархическую систему, что делает его более организованным и модульным.

🟠Избежание конфликтов имен
Использование пакетов помогает избежать конфликтов имен, так как разные модули могут иметь одинаковые имена, но располагаться в разных пакетах.

🟠Управление зависимостями
Пакеты упрощают управление зависимостями между различными частями кода.

Структура каталога
math_operations/


init.
py
addition.py
subtraction.py


Код вort package.ite
def add(a, b):
return a + b


Код вport package.item
def subtract(a, b):
return a - b


Использование в скрипте
import math_operations.addition
import math_operations.subtraction

result_add = math_operations.addition.add(5, 3)
result_subtract = math_operations.subtraction.subtract(5, 3)

print("Addition:", result_add) # Выведет: Addition: 8
print("Subtraction:", result_subtract) # Выведет: Subtraction: 2


Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
💊8👍1🔥1
🤔 Как устроены переменные?

Это ссылки на объекты, хранящиеся в памяти.
1. Переменная не содержит сам объект, а указывает на него.
2. Тип объекта определяется автоматически, а его управление памятью осуществляется сборщиком мусора.


Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍15🔥5
🤔 Что такое set?

Это неупорядоченная коллекция уникальных элементов в Python. Это одна из встроенных структур данных языка, которая используется, когда вам нужно работать с наборами данных, исключая дубликаты и выполняя операции над множествами (например, пересечение, объединение и разность).

🚩Основные характеристики `set`

🟠Неупорядоченность
Элементы множества не имеют фиксированного порядка, то есть вы не можете обращаться к элементам по индексу, как в списках или кортежах.

🟠Уникальность элементов
Во множестве не может быть дубликатов. Если вы добавите во множество несколько одинаковых элементов, они будут храниться как один экземпляр.

🟠Изменяемость
Множества в Python изменяемы: вы можете добавлять, удалять и изменять их элементы. Однако сами элементы множества должны быть неизменяемыми (например, числа, строки, кортежи).

🟠Быстродействие
Операции проверки принадлежности (in), добавления и удаления элементов работают очень быстро, благодаря использованию хэш-таблиц в реализации множества.

🚩Создание множества

🟠Пустое множество
Для создания пустого множества используется функция set(), так как {} создаёт пустой словарь
empty_set = set()
print(empty_set) # Output: set()


🟠Создание множества с элементами
Вы можете передать список, строку, кортеж или другой итерируемый объект в функцию set().
# Создание множества из списка
numbers = set([1, 2, 3, 4, 5])
print(numbers) # Output: {1, 2, 3, 4, 5}

# Создание множества из строки (уникальные символы)
chars = set("hello")
print(chars) # Output: {'h', 'e', 'l', 'o'} (порядок может быть разным)


🟠Использование литералов
Вы также можете использовать фигурные скобки {} для создания множества
fruits = {"apple", "banana", "cherry"}
print(fruits) # Output: {'apple', 'banana', 'cherry'}


🚩Основные операции с множествами

🟠Добавление элементов
Используется метод add()
my_set = {1, 2, 3}
my_set.add(4)
print(my_set) # Output: {1, 2, 3, 4}


🟠Удаление элементов
remove() — удаляет элемент, выбрасывая ошибку, если его нет.
discard() — удаляет элемент, не выбрасывая ошибку, если его нет.
my_set = {1, 2, 3}
my_set.remove(2) # Удаляем элемент 2
print(my_set) # Output: {1, 3}

my_set.discard(5) # Ошибки не будет, если элемента 5 нет


pop() — удаляет и возвращает случайный элемент (так как множество неупорядочено)
my_set = {1, 2, 3}
removed_element = my_set.pop()
print(removed_element) # Например: 1
print(my_set) # Например: {2, 3}


🟠Очистка множества
my_set = {1, 2, 3}
my_set.clear()
print(my_set) # Output: set()


🟠Проверка наличия элемента
Используется оператор in
my_set = {1, 2, 3}
print(2 in my_set) # Output: True
print(5 in my_set) # Output: False


🚩Операции над множествами

Python поддерживает классические операции теории множеств:

🟠Объединение (`union` или `|`)
Возвращает множество, содержащее все элементы из двух множеств.
set1 = {1, 2, 3}
set2 = {3, 4, 5}
print(set1 | set2) # Output: {1, 2, 3, 4, 5}
print(set1.union(set2)) # То же самое


🟠Пересечение (`intersection` или `&`)
Возвращает элементы, которые присутствуют в обоих множествах.
print(set1 & set2)  # Output: {3}
print(set1.intersection(set2)) # То же самое


🟠Разность (`difference` или `-`)
Возвращает элементы, которые присутствуют только в одном множестве (а не в другом).
print(set1 - set2)  # Output: {1, 2} (только в set1)
print(set1.difference(set2)) # То же самое


🟠Симметрическая разность (`symmetric_difference` или `^`)
Возвращает элементы, которые есть в одном из множеств, но не в обоих сразу.
print(set1 ^ set2)  # Output: {1, 2, 4, 5}
print(set1.symmetric_difference(set2)) # То же самое


🚩Неизменяемое множество (`frozenset`)

Если вам нужно создать множество, которое нельзя изменить, используйте frozenset
frozen = frozenset([1, 2, 3])
print(frozen) # Output: frozenset({1, 2, 3})

# frozen.add(4) # Ошибка: 'frozenset' object has no attribute 'add'


Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍17🤯2
🤔 Как реализуются методы класса?

Методы класса реализуются с использованием декоратора @classmethod.
1. Первый аргумент метода — cls, который указывает на сам класс, а не на экземпляр.
2. Используются для работы с атрибутами и методами класса, а не конкретного объекта.


Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍12🔥4
🤔 Что такое паттерн Стратегия (Strategy) ?

Это поведенческий паттерн проектирования, который определяет семейство алгоритмов, инкапсулирует каждый из них и делает их взаимозаменяемыми. Паттерн "Стратегия" позволяет изменять алгоритмы независимо от клиентов, которые их используют.

🚩Зачем нужен данный паттерн?

🟠Изоляция алгоритмов
Позволяет инкапсулировать различные алгоритмы и использовать их независимо.
🟠Упрощение кода
Устраняет дублирование кода и упрощает классы, которые используют эти алгоритмы.
🟠Гибкость и расширяемость
Легко добавлять новые алгоритмы или изменять существующие без изменения клиентского кода.

🚩Как работает данный паттерн?

🟠Стратегия (Strategy)
Интерфейс, определяющий общий метод, который должны реализовать все алгоритмы.
🟠Конкретные стратегии (ConcreteStrategy)
Реализации различных алгоритмов, которые реализуют интерфейс стратегии.
🟠Контекст (Context)
Класс, использующий стратегию для выполнения задачи.

from abc import ABC, abstractmethod

# Интерфейс стратегии
class Strategy(ABC):
@abstractmethod
def sort(self, data):
pass

# Конкретные стратегии
class BubbleSortStrategy(Strategy):
def sort(self, data):
print("Sorting using Bubble Sort")
for i in range(len(data)):
for j in range(0, len(data)-i-1):
if data[j] > data[j+1]:
data[j], data[j+1] = data[j+1], data[j]

class QuickSortStrategy(Strategy):
def sort(self, data):
print("Sorting using Quick Sort")
self.quick_sort(data, 0, len(data) - 1)

def quick_sort(self, data, low, high):
if low < high:
pi = self.partition(data, low, high)
self.quick_sort(data, low, pi - 1)
self.quick_sort(data, pi + 1, high)

def partition(self, data, low, high):
pivot = data[high]
i = low - 1
for j in range(low, high):
if data[j] <= pivot:
i = i + 1
data[i], data[j] = data[j], data[i]
data[i + 1], data[high] = data[high], data[i + 1]
return i + 1

# Контекст
class SortingContext:
def __init__(self, strategy: Strategy):
self._strategy = strategy

def set_strategy(self, strategy: Strategy):
self._strategy = strategy

def sort(self, data):
self._strategy.sort(data)

# Клиентский код
data = [5, 2, 9, 1, 5, 6]

context = SortingContext(BubbleSortStrategy())
context.sort(data)
print(data) # [1, 2, 5, 5, 6, 9]

context.set_strategy(QuickSortStrategy())
data = [3, 7, 8, 5, 2, 1, 9, 5, 4]
context.sort(data)
print(data) # [1, 2, 3, 4, 5, 5, 7, 8, 9]


🚩Плюсы и минусы

Изоляция алгоритмов
Алгоритмы инкапсулируются в отдельные классы, что упрощает их замену и добавление.
Упрощение кода
Контекст использует стратегии, избегая громоздких условных операторов.
Гибкость и расширяемость
Легко добавлять новые стратегии без изменения существующего кода.
Усложнение структуры кода
Добавление множества классов стратегий может усложнить проект.
Контекст знает о стратегиях
Контекст должен знать о всех возможных стратегиях, чтобы иметь возможность их переключать.

🚩Когда использовать данный паттерн?

Когда есть несколько вариантов алгоритмов для выполнения задачи.
Когда нужно динамически выбирать алгоритм во время выполнения.
Когда необходимо избежать множества условных операторов для выбора алгоритма.

Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
4👍2