Python | Вопросы собесов
13.4K subscribers
18 photos
1 file
320 links
Разбираем вопросы с собеседований на Python разработчика. Django, Flask, FastApi

Реклама: @easyoffer_adv
Решай тесты - t.me/+20tRfhrwPpM4NDQy

Нарешивай задачи - t.me/+nsl4meWmhfQwNDVi
Ищи работу - t.me/+cXGKkrOY2-w3ZTky
Download Telegram
Какие принципы программирования знаешь ?
Спросят с вероятностью 3%

Существует множество принципов, которые помогают разработчикам писать чистый, поддерживаемый и эффективный код. Вот некоторые из ключевых принципов:

SOLID Принципы


1️⃣Single Responsibility Principle (Принцип единственной ответственности):
Класс должен иметь только одну причину для изменения, то есть выполнять только одну задачу или отвечать за один аспект системы.
Пример: Класс, который обрабатывает данные пользователя, не должен также управлять подключением к базе данных.

2️⃣Open/Closed Principle (Принцип открытости/закрытости):
Программные сущности (классы, модули, функции) должны быть открыты для расширения, но закрыты для модификации.
Пример: Вместо изменения существующего кода для добавления новой функциональности, можно добавить новые классы или методы, которые расширяют существующее поведение.

3️⃣Liskov Substitution Principle (Принцип подстановки Барбары Лисков):
Объекты в программе должны быть заменяемы экземплярами их подтипов без изменения корректности программы.
Пример: Если у вас есть базовый класс «Животное» и подкласс «Птица», вы должны иметь возможность заменить «Животное» на «Птицу» без проблем.

4️⃣Interface Segregation Principle (Принцип разделения интерфейса):
Клиенты не должны зависеть от интерфейсов, которые они не используют.
Пример: Вместо одного большого интерфейса, лучше создать несколько маленьких интерфейсов, чтобы классы могли реализовать только те интерфейсы, которые им нужны.

5️⃣Dependency Inversion Principle (Принцип инверсии зависимостей):
Высокоуровневые модули не должны зависеть от низкоуровневых модулей. Оба типа модулей должны зависеть от абстракций.
Пример: Вместо того чтобы класс зависел от конкретного класса (например, класса базы данных), он должен зависеть от интерфейса или абстрактного класса, что позволяет легко менять реализацию.

Пример с SOLID и другими принципами
class Engine:
def start(self):
print("Engine started")

class Car:
def __init__(self, engine):
self.engine = engine

def start(self):
self.engine.start()

# Принцип Dependency Injection
engine = Engine()
car = Car(engine)
car.start() # Выведет: Engine started


Принципы программирования, такие как SOLID, KISS, DRY, YAGNI, инкапсуляция, разделение обязанностей, закон Деметры и композиция вместо наследования, помогают писать чистый, поддерживаемый и эффективный код. Они направлены на уменьшение связности, улучшение модульности и облегчение тестирования и поддержки кода.

👉 Можно посмотреть Примеры как отвечают люди на этот вопрос, или перейти К списку 1096 вопроса на Python разработчика. Ставь 👍 если нравится контент

🔐 База собесов | 🔐 База тестовых
Что возвращает лямбда-функция lambda x, y: x if x > y else y при вызове с аргументами 5 и 3?
Anonymous Quiz
44%
Возвращает x
2%
Возвращает y
9%
Возвращает True
45%
Возвращает большее из двух значений, 5
Как создать абстрактный класс ?
Спросят с вероятностью 3%

Для создания абстрактного класса используется модуль abc (Abstract Base Classes). Абстрактный класс - это класс, который не может быть инстанцирован, и который обычно содержит один или несколько абстрактных методов. Абстрактный метод - это метод, который объявлен, но не реализован в абстрактном классе. Подклассы обязаны реализовать все абстрактные методы, чтобы быть инстанцированными.

Шаги для создания абстрактного класса

1️⃣Импорт модуля abc.
2️⃣Создание класса, наследующего
ABC: Ваш абстрактный класс должен наследоваться от ABC, который является базовым классом для определения абстрактных классов.
3️⃣Определение абстрактных методов с помощью декоратора @abstractmethod: Методы, которые должны быть реализованы в подклассах, помечаются этим декоратором.

Пример кода
from abc import ABC, abstractmethod

# Определение абстрактного класса
class Animal(ABC):
@abstractmethod
def make_sound(self):
pass

@abstractmethod
def move(self):
pass

# Попытка создать экземпляр абстрактного класса вызовет ошибку
try:
animal = Animal()
except TypeError as e:
print(e) # Вывод: Can't instantiate abstract class Animal with abstract methods make_sound, move

# Подкласс, реализующий все абстрактные методы
class Dog(Animal):
def make_sound(self):
return "Woof!"

def move(self):
return "Runs"

# Создание экземпляра подкласса
dog = Dog()
print(dog.make_sound()) # Вывод: Woof!
print(dog.move()) # Вывод: Runs

# Подкласс, не реализующий все абстрактные методы
class Fish(Animal):
def move(self):
return "Swims"

# Попытка создать экземпляр неполного подкласса вызовет ошибку
try:
fish = Fish()
except TypeError as e:
print(e) # Вывод: Can't instantiate abstract class Fish with abstract methods make_sound


Объяснение примера

Абстрактный класс Animal: Определяет два абстрактных метода make_sound и move.
Подкласс Dog: Реализует оба абстрактных метода, поэтому его экземпляр может быть создан.
Подкласс Fish: Реализует только метод move, поэтому попытка создать его экземпляр вызовет ошибку, так как метод make_sound остался нереализованным.

Почему это нужно

Обеспечение реализации важных методов: Абстрактные классы гарантируют, что все подклассы будут содержать определенные методы, что важно для согласованности и предсказуемости поведения объектов.
Полиморфизм: Позволяет работать с разными объектами через единый интерфейс, что делает код гибким и расширяемым.

Абстрактный класс создается с помощью модуля abc. Он содержит абстрактные методы, которые должны быть реализованы в подклассах. Это помогает гарантировать, что все подклассы будут иметь определенные методы.

👉 Можно посмотреть Примеры как отвечают люди на этот вопрос, или перейти К списку 1096 вопроса на Python разработчика. Ставь 👍 если нравится контент

🔐 База собесов | 🔐 База тестовых
Какой метод используется для обеспечения, что класс наследует атрибуты и методы нескольких родительских классов?
Anonymous Quiz
11%
Динамическое наследование
81%
Множественное наследование
4%
Прототипное наследование
4%
Интерфейсное наследование
Чем отличаются методы сокрытия ?
Спросят с вероятностью 3%

Методы и атрибуты класса могут быть скрыты от внешнего использования с помощью различных уровней сокрытия. Сокрытие реализуется с помощью соглашений об именах, а не с помощью жесткой инкапсуляции, как в некоторых других языках программирования. Основные уровни сокрытия включают публичные, защищенные и приватные методы и атрибуты.

Публичные методы и атрибуты


Доступны из любого места, как внутри класса, так и за его пределами. Их имена не начинаются с подчеркиваний.

Пример:
class MyClass:
def __init__(self):
self.public_attribute = "I am public"

def public_method(self):
return "This is a public method"

obj = MyClass()
print(obj.public_attribute) # Вывод: I am public
print(obj.public_method()) # Вывод: This is a public method


Защищенные методы и атрибуты

Не предназначены для использования за пределами класса и его подклассов. Они обозначаются одним подчеркиванием в начале имени. Это всего лишь соглашение, сигнализирующее другим разработчикам, что такие методы и атрибуты не следует использовать вне класса или его подклассов.

Пример:

class MyClass:
def __init__(self):
self._protected_attribute = "I am protected"

def _protected_method(self):
return "This is a protected method"

class SubClass(MyClass):
def access_protected(self):
return self._protected_method()

obj = MyClass()
sub_obj = SubClass()

print(sub_obj.access_protected()) # Вывод: This is a protected method


Приватные методы и атрибуты

Скрыты от внешнего доступа и доступны только внутри самого класса. Они обозначаются двумя подчеркиваниями в начале имени. Python реализует это с помощью механизма именования, который изменяет имя метода или атрибута, добавляя к нему имя класса, чтобы затруднить доступ извне.

Пример:
class MyClass:
def __init__(self):
self.__private_attribute = "I am private"

def __private_method(self):
return "This is a private method"

def access_private(self):
return self.__private_method()

obj = MyClass()

try:
print(obj.__private_attribute)
except AttributeError as e:
print(e) # Вывод: 'MyClass' object has no attribute '__private_attribute'

try:
print(obj.__private_method())
except AttributeError as e:
print(e) # Вывод: 'MyClass' object has no attribute '__private_method'

# Доступ к приватным методам через публичный метод класса
print(obj.access_private()) # Вывод: This is a private method


Почему это важно

Инкапсуляция: Сокрытие позволяет инкапсулировать данные и методы, защищая внутреннее состояние объекта и предотвращая неправильное использование или изменение извне.
Читаемость и поддерживаемость: Соглашения об именах помогают разработчикам понять, какие методы и атрибуты предназначены для внутреннего использования, а какие могут быть использованы внешними клиентами.
Безопасность кода: Защищенные и приватные методы и атрибуты снижают риск случайного изменения внутреннего состояния объекта, обеспечивая более надежное и предсказуемое поведение программного кода.

Публичные методы и атрибуты доступны отовсюду.
Защищенные методы и атрибуты обозначаются одним подчеркиванием и предназначены для использования только внутри класса и его подклассов.
Приватные методы и атрибуты обозначаются двумя подчеркиваниями и доступны только внутри класса.

👉 Можно посмотреть Примеры как отвечают люди на этот вопрос, или перейти К списку 1096 вопроса на Python разработчика. Ставь 👍 если нравится контент

🔐 База собесов | 🔐 База тестовых
Какие паттерны проектирования используешь ?
Спросят с вероятностью 3%

Паттерны проектирования являются повторяемыми решениями общих проблем проектирования в объектно-ориентированном программировании. Они помогают создавать гибкие и легко поддерживаемые системы. Вот некоторые из наиболее часто используемых паттернов проектирования:

1️⃣Одиночка (Singleton)

Цель: Гарантирует, что у класса есть только один экземпляр, и предоставляет глобальную точку доступа к этому экземпляру.

Пример кода:
class Singleton:
_instance = None

def __new__(cls, *args, **kwargs):
if not cls._instance:
cls._instance = super(Singleton, cls).__new__(cls, *args, **kwargs)
return cls._instance

singleton1 = Singleton()
singleton2 = Singleton()
print(singleton1 is singleton2) # Вывод: True


2️⃣Строитель (Builder)

Цель: Отделяет создание сложного объекта от его представления, позволяя использовать один и тот же процесс создания для различных представлений.

Пример кода:
class Product:
def __init__(self):
self.parts = []

def add(self, part):
self.parts.append(part)

def show(self):
return ", ".join(self.parts)

class Builder:
def build_part_a(self):
pass

def build_part_b(self):
pass

class ConcreteBuilder(Builder):
def __init__(self):
self.product = Product()

def build_part_a(self):
self.product.add("Part A")

def build_part_b(self):
self.product.add("Part B")

def get_product(self):
return self.product

class Director:
def __init__(self, builder):
self._builder = builder

def construct(self):
self._builder.build_part_a()
self._builder.build_part_b()

builder = ConcreteBuilder()
director = Director(builder)
director.construct()
product = builder.get_product()
print(product.show()) # Вывод: Part A, Part B


3️⃣Фабричный метод (Factory Method)

Цель: Определяет интерфейс для создания объекта, но позволяет подклассам изменить тип создаваемого объекта.

Пример кода:
class Product:
def operation(self):
pass

class ConcreteProductA(Product):
def operation(self):
return "ConcreteProductA"

class ConcreteProductB(Product):
def operation(self):
return "ConcreteProductB"

class Creator:
def factory_method(self):
pass

def some_operation(self):
product = self.factory_method()
return f"Creator: The same creator's code has just worked with {product.operation()}"

class ConcreteCreatorA(Creator):
def factory_method(self):
return ConcreteProductA()

class ConcreteCreatorB(Creator):
def factory_method(self):
return ConcreteProductB()

creator_a = ConcreteCreatorA()
print(creator_a.some_operation()) # Вывод: Creator: The same creator's code has just worked with ConcreteProductA

creator_b = ConcreteCreatorB()
print(creator_b.some_operation()) # Вывод: Creator: The same creator's code has just worked with ConcreteProductB


Использование паттернов проектирования помогает создавать гибкие, масштабируемые и легко поддерживаемые системы. Они позволяют решать типичные задачи проектирования, избегая распространенных ошибок.

👉 Можно посмотреть Примеры как отвечают люди на этот вопрос, или перейти К списку 1096 вопроса на Python разработчика. Ставь 👍 если нравится контент

🔐 База собесов | 🔐 База тестовых
🔥Тесты для подготовки к собеседованию🔥
Выбери своё направление:

1. Frontend
2. Python
3. Java
4. Тестировщик QA
5. Data Science
6. DevOps
7. C#
8. С/C++
9. Golang
10. PHP
11. Kotlin
12. Swift
Please open Telegram to view this post
VIEW IN TELEGRAM
В чем основные принципы инкапсуляции ?
Спросят с вероятностью 3%

Инкапсуляция является одним из основных принципов объектно-ориентированного программирования (ООП). Она подразумевает объединение данных и методов, работающих с этими данными, в единый объект, а также скрытие внутренней реализации этого объекта от внешнего мира. Это достигается с помощью контроля доступа к атрибутам и методам класса. Основные принципы инкапсуляции включают:

1️⃣Сокрытие данных

Заключается в ограничении прямого доступа к атрибутам объекта. Это достигается с помощью модификаторов доступа, таких как публичные, защищенные и приватные атрибуты.

Пример:
Публичные атрибуты: Доступны отовсюду.
    class MyClass:
def __init__(self):
self.public_attribute = "Public"


2️⃣Контроль доступа к данным

Осуществляется с помощью геттеров и сеттеров (методы для получения и изменения значений атрибутов). Это позволяет добавить логику в методы доступа, например, проверку корректности значений.

Пример:
class MyClass:
def __init__(self):
self.__private_attribute = "Initial Value"

def get_private_attribute(self):
return self.__private_attribute

def set_private_attribute(self, value):
if isinstance(value, str):
self.__private_attribute = value
else:
raise ValueError("Value must be a string")

obj = MyClass()
print(obj.get_private_attribute()) # Вывод: Initial Value
obj.set_private_attribute("New Value")
print(obj.get_private_attribute()) # Вывод: New Value


3️⃣Изоляция внутренней реализации

Позволяет изолировать внутреннюю реализацию объекта от внешнего мира. Внешний код использует только публичные методы для взаимодействия с объектом, не зная о деталях его внутренней структуры.

Пример:
class BankAccount:
def __init__(self, balance):
self.__balance = balance

def deposit(self, amount):
if amount > 0:
self.__balance += amount
else:
raise ValueError("Deposit amount must be positive")

def withdraw(self, amount):
if 0 < amount <= self.__balance:
self.__balance -= amount
else:
raise ValueError("Invalid withdraw amount")

def get_balance(self):
return self.__balance

account = BankAccount(1000)
account.deposit(500)
print(account.get_balance()) # Вывод: 1500
account.withdraw(200)
print(account.get_balance()) # Вывод: 1300


4️⃣Повышение надежности и упрощение сопровождения кода

Внутренние детали реализации могут быть изменены без влияния на внешний код. Это делает код более надежным и легким в сопровождении.

Пример:
Изменение внутренней реализации:
    class BankAccount:
def __init__(self, balance):
self.__balance = balance

def deposit(self, amount):
if amount > 0:
self.__balance += amount
else:
raise ValueError("Deposit amount must be positive")

def withdraw(self, amount):
if 0 < amount <= self.__balance:
self.__balance -= amount
else:
raise ValueError("Invalid withdraw amount")

def get_balance(self):
return self.__balance

# Внешний код не изменяется
account = BankAccount(1000)
account.deposit(500)
print(account.get_balance()) # Вывод: 1500
account.withdraw(200)
print(account.get_balance()) # Вывод: 1300


Инкапсуляция объединяет данные и методы в объекте, скрывая внутреннюю реализацию и предоставляя публичный интерфейс для взаимодействия. Это улучшает надежность, безопасность и сопровождение кода.

👉 Можно посмотреть Примеры как отвечают люди на этот вопрос, или перейти К списку 1096 вопроса на Python разработчика. Ставь 👍 если нравится контент

🔐 База собесов | 🔐 База тестовых
Как связаны new и singleton ?
Спросят с вероятностью 3%

Методы __new__ и паттерн Singleton тесно связаны, поскольку методью 3%

Мечасто используется для реализации Singleton в Python. Singleton — это паттерн проектирования, который гарантирует, что у класса будет только один экземпляр на протяжении всего жизненного цикла приложения. Метод new отвечает за создание нового экземпляра класса, и именно его можно использовать для контроля создания объектов.

Метод new — это специальный метод, который вызывается перед методом init. Он отвечает за создание и возвращение нового экземпляра класса. В отличие от метода init, который инициализирует уже существующий объект, new создаёт новый объект класса.

Пример использования new в Singleton

Для реализации паттерна Singleton с использованием метода new нужно сделать так, чтобы метод new возвращал один и тот же экземпляр класса при каждом вызове.

Пример кода:
class Singleton:
_instance = None

def __new__(cls, *args, **kwargs):
if cls._instance is None:
cls._instance = super(Singleton, cls).__new__(cls, *args, **kwargs)
return cls._instance

def __init__(self, value):
if not hasattr(self, '_initialized'): # Проверка на инициализацию
self.value = value
self._initialized = True

# Проверка работы Singleton
singleton1 = Singleton("First Instance")
print(singleton1.value) # Вывод: First Instance

singleton2 = Singleton("Second Instance")
print(singleton2.value) # Вывод: First Instance

print(singleton1 is singleton2) # Вывод: True


Пошаговое объяснение:

1️⃣Статический атрибут _instance: Используется для хранения единственного экземпляра класса.
2️⃣
Метод
eton1 = Sin

Проверяет, существует ли уже экземпляр класса (cls._instance is None).
Если не существует, создаёт новый экземпляр с помощью super(Singleton, cls).new(cls, args, kwargs) и сохраняет его в cls._instance.
Возвращает экземпляр класса, хранящийся в cls._instance.
3️⃣Метод init:
Инициализирует экземпляр только один раз. Проверка if not hasattr(self, '_initialized') предотвращает повторную инициализацию объекта.

Почему Singleton и new связаны

Контроль создания объектов: Метод new позволяет контролировать процесс создания объекта, что идеально подходит для реализации Singleton.
Единственность экземпляра: С помощью new можно гарантировать, что будет создан только один экземпляр класса, поскольку new может возвращать уже существующий экземпляр.
Разделение обязанностей: Метод new отвечает за создание (или возврат существующего) экземпляра, а метод init — за его инициализацию, если это необходимо.

Метод new используется для создания новых экземпляров класса и идеально подходит для реализации паттерна Singleton, так как позволяет контролировать создание единственного экземпляра класса и возвращать его при каждом вызове.

👉 Можно посмотреть Примеры как отвечают люди на этот вопрос, или перейти К списку 1096 вопроса на Python разработчика. Ставь 👍 если нравится контент

🔐 База собесов | 🔐 База тестовых
Как бы реализовал паттерн singleton ?
Спросят с вероятностью 3%

Паттерн Singleton используется для того, чтобы создать класс, который имеет только один экземпляр. Это полезно, когда нужно ограничить количество объектов, например, для управления ресурсами (как подключение к базе данных) или для хранения глобального состояния.

Существует несколько способов реализовать Singleton. Рассмотрим один из наиболее распространенных способов - использование приватного конструктора и класса-метода для получения экземпляра.
class Singleton:
__instance = None

def __new__(cls, args, kwargs):
if cls.__instance is None:
cls.__instance = super(Singleton, cls).__new__(cls, args, kwargs)
return cls.__instance

def __init__(self):
if not hasattr(self, 'initialized'):
self.initialized = True
# Инициализация объекта, если нужно
self.value = 0

# Проверка работы
singleton1 = Singleton()
singleton2 = Singleton()

print(singleton1 is singleton2) # Выведет: True
print(singleton1.value) # Выведет: 0
singleton1.value = 42
print(singleton2.value) # Выведет: 42


Объяснение кода

1️⃣Приватный атрибут _instance_:
Этот атрибут используется для хранения единственного экземпляра класса.

2️⃣Метод __new__:
__new__ - это метод, который создаёт новый экземпляр класса. Если экземпляр уже существует (cls.__instance не None), возвращается существующий экземпляр.
Если экземпляр ещё не был создан, super(Singleton, cls).__new__(cls, args, kwargs) создаёт новый экземпляр и сохраняет его в cls.__instance.

3️⃣Метод init:
Методреализовалвызывается каждый раз при создании экземпляра. Чтобы избежать повторной инициализации, проверяем наличие атрибута initialized.

Можно также реализовать Singleton с помощью декоратора:
def singleton(cls):
instances = {}
def get_instance(*args, **kwargs):
if cls not in instances:
instances[cls] = cls(*args, **kwargs)
return instances[cls]
return get_instance

@singleton
class SingletonClass:
def __init__(self):
self.value = 0

# Проверка работы
singleton1 = SingletonClass()
singleton2 = SingletonClass()

print(singleton1 is singleton2) # Выведет: True
print(singleton1.value) # Выведет: 0
singleton1.value = 42
print(singleton2.value) # Выведет: 42


Объяснение

1️⃣Декоратор singleton:
Хранит экземпляры класса в словаре instances.
Если экземпляра класса ещё нет в словаре, он создаётся и добавляется в словарь.
Возвращается существующий или новый экземпляр класса.

Паттерн Singleton гарантирует, что класс имеет только один экземпляр. Это достигается контролем создания экземпляров через методые None), или декоратор. Singleton полезен для управления ресурсами и глобального состояния.

👉 Можно посмотреть Примеры как отвечают люди на этот вопрос, или перейти К списку 1096 вопроса на Python разработчика. Ставь 👍 если нравится контент

🔐 База собесов | 🔐 База тестовых
Какое максимально допустимое количество символов рекомендует PEP8 использовать в строке кода?
Anonymous Quiz
51%
79 символов
31%
120 символов
7%
100 символов
11%
90 символов
На что влияет атрибут slots ?
Спросят с вероятностью 3%

Атрибут __slots__ используется для ограничения атрибутов, которые можно добавлять экземплярам класса, и для оптимизации использования памяти. Это особенно полезно в сценариях, где создаётся много объектов одного класса.

Как он работает

По умолчанию, Python использует словарь (__dict__) для хранения атрибутов экземпляров. Это даёт большую гибкость, но также приводит к значительному расходу памяти.

Когда вы определяете атрибут slots в классе, вы тем самым ограничиваете класс набором конкретных атрибутов. Это убирает необходимость в словаре для хранения атрибутов и может значительно сократить использование памяти.

Пример использования
class RegularClass:
def __init__(self, x, y):
self.x = x
self.y = y

class SlotsClass:
_(self, x, = ['x', 'y']

def __init__(self, x, y):
self.x = x
self.y = y

# Создадим экземпляры классов
regular_instance = RegularClass(1, 2)
slots_instance = SlotsClass(1, 2)

# Попробуем добавить новый атрибут
regular_instance.z = 3 # Это работает
# slots_instance.z = 3 # Это вызовет ошибку AttributeError

print(regular_instance.__dict__) # {'x': 1, 'y': 2, 'z': 3}
# print(slots_instance.__dict__) # AttributeError: 'SlotsClass' object has no attribute '__dict__'

# Проверим использование памяти
import sys
print(sys.getsizeof(regular_instance)) # Выведет размер в байтах
print(sys.getsizeof(slots_instance)) # Выведет размер в байтах, который будет меньше


Объяснение

1️⃣Ограничение атрибутов:
В классе RegularClass можно добавлять любые атрибуты, так как используется словарь (__dict__).
В классе SlotsClass можно добавлять только атрибуты, указанные в
= x


2️⃣Использование памяти:
Экземпляры класса состью 3%

Азанимают меньше памяти, так как для хранения атрибутов не используется словарь.
Это может существенно уменьшить использование памяти в случаях, когда создаётся много экземпляров класса.

Преимущества:
Снижение использования памяти: Экономия памяти за счёт отказа от словарей для хранения атрибутов.
Ускорение доступа к атрибутам: Быстрый доступ к атрибутам благодаря фиксированному набору атрибутов.

Недостатки:
Ограничение гибкости: Невозможно добавлять новые атрибуты, не указанные в_slots__ в
Наследование: Классы-наследники должны явно указывать slots, чтобы сохранить оптимизацию.

Атрибут slots ограничивает набор атрибутов экземпляров класса и уменьшает использование памяти за счёт отказа от словарей для хранения атрибутов. Это повышает эффективность, но уменьшает гибкость.

👉 Можно посмотреть Примеры как отвечают люди на этот вопрос, или перейти К списку 1096 вопроса на Python разработчика. Ставь 👍 если нравится контент

🔐 База собесов | 🔐 База тестовых
Какая проблема Python связана с множественным наследованием ?
Спросят с вероятностью 3%

Множественное наследование позволяет классу наследовать от нескольких базовых классов, что может быть полезно, но также приводит к ряду проблем. Основные проблемы, связанные с множественным наследованием, включают:

1️⃣Проблема ромба (Diamond Problem):
Это ситуация, когда класс наследует от двух классов, которые оба наследуют от одного общего предка. Это может привести к неоднозначности в разрешении методов и атрибутов.
Пример:
          class A:
def method(self):
print("Method in A")

class B(A):
def method(self):
print("Method in B")

class C(A):
def method(self):
print("Method in C")

class D(B, C):
pass

d = D()
d.method() # Какой метод будет вызван: из B или из C?


2️⃣Проблемы с порядком разрешения методов (MRO - Method Resolution Order):
В Python для решения проблемы ромба используется алгоритм C3-линеаризации, который определяет порядок, в котором должны быть просмотрены базовые классы.
Можно использовать функцию mro() для просмотра порядка разрешения методов:
  print(D.mro())

Пример:
          class A:
def method(self):
print("Method in A")

class B(A):
def method(self):
print("Method in B")

class C(A):
def method(self):
print("Method in C")

class D(B, C):
pass

d = D()
d.method() # Выведет: "Method in B", так как B стоит раньше C в MRO


3️⃣Управление состоянием и совместимость:
Классы могут иметь конфликтующие атрибуты и методы, что усложняет управление состоянием объектов.
Переопределение методов в одном классе может непредсказуемо повлиять на поведение других классов.

Как он решает эти проблемы


Использует несколько подходов для решения проблем, связанных с множественным наследованием:

1️⃣Алгоритм C3-линеаризации:
Этот алгоритм гарантирует корректный и предсказуемый порядок вызовов методов при множественном наследовании.
Порядок определяется как левая-направо, глубина-первый подход с корректировкой для избежания дублирования базовых классов.

2️⃣Использование функции super():
Функция super() позволяет корректно вызывать методы родительских классов, следуя порядку MRO.
Это помогает избежать явного указания родительских классов и упрощает поддержку кода.
Пример:
          class A:
def method(self):
print("Method in A")

class B(A):
def method(self):
super().method()
print("Method in B")

class C(A):
def method(self):
super().method()
print("Method in C")

class D(B, C):
def method(self):
super().method()

d = D()
d.method()
# Выведет:
# Method in A
# Method in C
# Method in B


Проблема множественного наследования связана с неоднозначностью порядка вызова методов и конфликтами атрибутов. Python решает эти проблемы с помощью алгоритма C3-линеаризации и функции super(), обеспечивающей корректный порядок разрешения методов.

👉 Можно посмотреть Примеры как отвечают люди на этот вопрос, или перейти К списку 1096 вопроса на Python разработчика. Ставь 👍 если нравится контент

🔐 База собесов | 🔐 База тестовых
Какой HTTP метод REST API не соответствует принципу идемпотентности, согласно стандартному использованию?
Anonymous Quiz
34%
PUT
26%
DELETE
10%
GET
30%
POST
Для чего они нужны dunder методы ?
Спросят с вероятностью 3%

Dunder-методы представляют собой специальные методы, которые начинаются и заканчиваются двойным подчёркиванием (например, __init__,Для чего __repr__).

Основные методы и их назначения

1️⃣Инициализация и завершение объектов:
__init__(self, ...): Конструктор класса, вызывается при создании нового экземпляра.
          class MyClass:
def __init__(self, value):
self.value = value

__del__(self): Деструктор, вызывается при удалении объекта.

2️⃣Представление объектов:
__str__(self): Определяет поведение функции str() и print(). Возвращает строковое представление объекта для пользователя.
          class MyClass:
def __init__(self, value):
self.value = value

def __str__(self):
return f'MyClass with value {self.value}'

__repr__(self): Определяет поведение функции repr(). Возвращает строковое представление объекта для разработчика.
          class MyClass:
def __init__(self, value):
self.value = value

def __repr__(self):
return f'MyClass({self.value!r})'


3️⃣Сравнение объектов:
__eq__(self, other): Оператор равенства ==.
__lt__(self, other): Оператор меньше <.
__le__(self, other): Оператор меньше или равно <=.
Аналогично можно определить методыСравнениДля чегоДля чего

4️⃣Арифметические операции:
__add__(self, other): Оператор сложения +.
__sub__(self, other): Оператор вычитания -.
__mul__(self, other): Оператор умножения *.
Аналогично можно определить методы для других арифметических операций:х назначения
Для чего они нДля чего Для чего

5️⃣Контейнерные операции:
__len__(self): Возвращает длину объекта, используется в функции len().
          class MyContainer:
def __init__(self, items):
self.items = items

def __len__(self):
return len(self.items)

__getitem__(self, key): Позволяет доступ к элементам по ключу (используется оператор []).
          class MyContainer:
def __init__(self, items):
self.items = items

def __getitem__(self, index):
return self.items[index]


6️⃣Итерация:
__iter__(self): Возвращает итератор для объекта.
          class MyContainer:
def __init__(self, items):
self.items = items

def __iter__(self):
return iter(self.items)


7️⃣Контекстные менеджеры:
__enter__(self): Определяет действия при входе в контекст (with).
__exit__(self, exc_type, exc_value, traceback): Определяет действия при выходе из контекста.
          class MyContextManager:
def __enter__(self):
print("Entering the context")
return self

def __exit__(self, exc_type, exc_value, traceback):
print("Exiting the context")

with MyContextManager():
print("Inside the context")


Зачем они нужны

1️⃣Упрощение работы с объектами: Позволяют легко определять, как объекты класса должны вести себя при использовании стандартных операторов и функций Python.
2️⃣Читаемость и удобство: Улучшают читаемость и удобство использования кода, делая объекты более интуитивными и естественными для работы.
3️⃣Переиспользование кода: Позволяют реализовать методы один раз и переиспользовать их в различных частях программы, что способствует уменьшению дублирования кода.

Dunder-методы позволяют классам интегрироваться с встроенными операциями и функциями, такими как арифметические операции, сравнения и представления. Они делают работу с объектами интуитивной и упрощают код.

👉 Можно посмотреть Примеры как отвечают люди на этот вопрос, или перейти К списку 1096 вопроса на Python разработчика. Ставь 👍 если нравится контент

🔐 База собесов | 🔐 База тестовых