#علم_داده
بسیاری از ما شنیدهایم که علم داده (Data Science) علمِ دنیای فرداست و متخصصان علم داده به سرعت توسط کسب و کارها جذب میشوند؛ اما شاید فرصتی پیش نیامده باشد تا دربارهی قلمرو علم داده و زیرمجموعههای آن مطالعه کنیم.
با این فرض، میخواهیم در این درس به صورت بسیار مختصر به تعریف علم داده و معرفی دانشها و مهارتهای وابسته به آن بپردازیم.
آیا ما هم با دستاوردهای علم داده سر و کار داریم؟
ممکن است در نگاه اول به نظر برسد که بحث علم داده، یک بحث تخصصی برای محققان است و انسانهای عادی، با دستاوردهای آن سر و کار ندارند (یا اینکه هنوز سر و کار ندارند)، اما چنین فرضی درست نیست:
هر بار که به جستجو در گوگل میپردازیم؛
هر بار که یک وبسایت را باز میکنیم و تبلیغاتی متناسب با سلیقهی ما نمایش داده میشود؛
هر بار که آمازون یا سایتهای خردهفروشی دیگر، بر اساس خریدهای قبلی و انتخابهای فعلی ما، پیشنهادهای جدیدی را مطرح میکنند (موتور توصیهگر)؛
در حال استفاده از دستاوردهای علم داده هستیم. ضمن اینکه در برخی کشورهای توسعهیافته، حق بیمه، مدیریت چراغهای راهنمایی و رانندگی و توزیع امکانات و فرصتهای شهری هم با تکیه بر علم داده انجام میشود.
واقعیت این است که علم داده به معنای خاص، چند دهه قدمت دارد و به معنای عام، ریشههای آن را میتوان در قرنهای گذشته هم جستجو کرد.
اما قدرت گرفتن چند «روند» طی سالهای اخیر، باعث شده که علم داده بیش از پیش مورد توجه قرار بگیرد. از جملهی این روندها میتوان به موارد زیر اشاره کرد:
افزایش حجم دادهها (در حدی که بیگ دیتا به مسئلهی بسیاری از کسب و کارها تبدیل شد)
افزایش قدرت محاسباتی سیستمهای سختافزاری (که پیادهسازی بسیاری از پروژههای علم داده را توجیهپذیر کرد)
افزایش حجم تولید داده در اینترنت (از اطلاعات تراکنشهای انسانها و فعالیت در شبکههای اجتماعی تا دادههای گردآوری شده توسط سنسورها، مثلاً اطلاعات موقعیت فیزیکی انسانها در لحظات مختلف)
خلق روشهای جدیدتر برای تحلیل دادهها
در حال حاضر، بسیاری از کسب و کارها برای حل مسائل خود و بهخصوص سیاستگذاری و انجام اقدامهای پیشگیرانه، از علم داده کمک میگیرند.
@python_easy_learn
بسیاری از ما شنیدهایم که علم داده (Data Science) علمِ دنیای فرداست و متخصصان علم داده به سرعت توسط کسب و کارها جذب میشوند؛ اما شاید فرصتی پیش نیامده باشد تا دربارهی قلمرو علم داده و زیرمجموعههای آن مطالعه کنیم.
با این فرض، میخواهیم در این درس به صورت بسیار مختصر به تعریف علم داده و معرفی دانشها و مهارتهای وابسته به آن بپردازیم.
آیا ما هم با دستاوردهای علم داده سر و کار داریم؟
ممکن است در نگاه اول به نظر برسد که بحث علم داده، یک بحث تخصصی برای محققان است و انسانهای عادی، با دستاوردهای آن سر و کار ندارند (یا اینکه هنوز سر و کار ندارند)، اما چنین فرضی درست نیست:
هر بار که به جستجو در گوگل میپردازیم؛
هر بار که یک وبسایت را باز میکنیم و تبلیغاتی متناسب با سلیقهی ما نمایش داده میشود؛
هر بار که آمازون یا سایتهای خردهفروشی دیگر، بر اساس خریدهای قبلی و انتخابهای فعلی ما، پیشنهادهای جدیدی را مطرح میکنند (موتور توصیهگر)؛
در حال استفاده از دستاوردهای علم داده هستیم. ضمن اینکه در برخی کشورهای توسعهیافته، حق بیمه، مدیریت چراغهای راهنمایی و رانندگی و توزیع امکانات و فرصتهای شهری هم با تکیه بر علم داده انجام میشود.
واقعیت این است که علم داده به معنای خاص، چند دهه قدمت دارد و به معنای عام، ریشههای آن را میتوان در قرنهای گذشته هم جستجو کرد.
اما قدرت گرفتن چند «روند» طی سالهای اخیر، باعث شده که علم داده بیش از پیش مورد توجه قرار بگیرد. از جملهی این روندها میتوان به موارد زیر اشاره کرد:
افزایش حجم دادهها (در حدی که بیگ دیتا به مسئلهی بسیاری از کسب و کارها تبدیل شد)
افزایش قدرت محاسباتی سیستمهای سختافزاری (که پیادهسازی بسیاری از پروژههای علم داده را توجیهپذیر کرد)
افزایش حجم تولید داده در اینترنت (از اطلاعات تراکنشهای انسانها و فعالیت در شبکههای اجتماعی تا دادههای گردآوری شده توسط سنسورها، مثلاً اطلاعات موقعیت فیزیکی انسانها در لحظات مختلف)
خلق روشهای جدیدتر برای تحلیل دادهها
در حال حاضر، بسیاری از کسب و کارها برای حل مسائل خود و بهخصوص سیاستگذاری و انجام اقدامهای پیشگیرانه، از علم داده کمک میگیرند.
@python_easy_learn
#علم_داده
تعریف علم داده چیست؟
میگویند علم داده گرفتارِ جنگ تعریفها است (+). به این معنا که افراد مختلف، آن را به شکلهای متفاوتی تعریف کردهاند و چون هیچکس از تعریف دیگری راضی نیست، همه مشغول نقد تعریف یکدیگر هستند.
واقعیت این است که مدعیان تخصص علم داده هم در این میان بیتقصیر نیستند. در حدی که گاهی یک نفر که صرفاً توانایی ترسیم چند نمودار در اکسل را دارد، خود را متخصص علم داده معرفی میکند و نتیجه این میشود که عدهای میگویند: «متخصص علم داده، همان کارشناس آمار است که حقوق بیشتری میخواهد.»
اگر از این اختلافنظرها و افراطها بگذریم، میتوان گفت دو تعریف زیر تقریباً در میان غالب متخصصان علم داده پذیرفته شدهاند:
تعریف علم داده توسط براشلر و همکاران (منبع)
علم داده به ترکیب منحصربهفردی از اصول و روشها، اعم از تحلیل، مهندسی، کارآفرینی و علم ارتباطات اشاره دارد که میکوشد از دادهها، ارزش اقتصادی خلق کند.
تعریف علم داده توسط کِهِلِر (منبع)
علم داده شامل مجموعهای از اصول، مسائل، الگوریتمها و فرایندهاست که برای استخراج الگوهای غیرواضح و قابلاستفاده از حجم بزرگ دادهها بهکار گرفته میشود.
این الگوها واضح نیستند؛ به این معنا که غالباً با تحلیل شهودی کارشناسان، نمیتوان آنها را یافت و درک کرد.
این الگوها کاربردی هستند؛ به این معنا که صرفاً دادههای پیش رو را توصیف نمیکنند؛ بلکه مسیری برای اقدام عملی در اختیار ما میگذارند.
@python_easy_learn
تعریف علم داده چیست؟
میگویند علم داده گرفتارِ جنگ تعریفها است (+). به این معنا که افراد مختلف، آن را به شکلهای متفاوتی تعریف کردهاند و چون هیچکس از تعریف دیگری راضی نیست، همه مشغول نقد تعریف یکدیگر هستند.
واقعیت این است که مدعیان تخصص علم داده هم در این میان بیتقصیر نیستند. در حدی که گاهی یک نفر که صرفاً توانایی ترسیم چند نمودار در اکسل را دارد، خود را متخصص علم داده معرفی میکند و نتیجه این میشود که عدهای میگویند: «متخصص علم داده، همان کارشناس آمار است که حقوق بیشتری میخواهد.»
اگر از این اختلافنظرها و افراطها بگذریم، میتوان گفت دو تعریف زیر تقریباً در میان غالب متخصصان علم داده پذیرفته شدهاند:
تعریف علم داده توسط براشلر و همکاران (منبع)
علم داده به ترکیب منحصربهفردی از اصول و روشها، اعم از تحلیل، مهندسی، کارآفرینی و علم ارتباطات اشاره دارد که میکوشد از دادهها، ارزش اقتصادی خلق کند.
تعریف علم داده توسط کِهِلِر (منبع)
علم داده شامل مجموعهای از اصول، مسائل، الگوریتمها و فرایندهاست که برای استخراج الگوهای غیرواضح و قابلاستفاده از حجم بزرگ دادهها بهکار گرفته میشود.
این الگوها واضح نیستند؛ به این معنا که غالباً با تحلیل شهودی کارشناسان، نمیتوان آنها را یافت و درک کرد.
این الگوها کاربردی هستند؛ به این معنا که صرفاً دادههای پیش رو را توصیف نمیکنند؛ بلکه مسیری برای اقدام عملی در اختیار ما میگذارند.
@python_easy_learn
#علم_داده
آیا علم داده همان داده کاوی است؟
گاهی اوقات علم داده (Data Science) را با داده کاوی (Data Mining) و گاه با یادگیری ماشین (Machine Learning) مترادف در نظر میگیرند.
گاهی هم پیش میآید که آن را زیرمجموعهی علم آمار فرض میکنند. اما منطقیتر است که برای علم داده تعریف گستردهتری در نظر بگیریم. زیرا:
علم داده ، بر خلاف داده کاوی، تمام فرایند مرتبط با داده، از گردآوری اولیه تا عرضهی محصول مبتنی بر دادهها را در برمیگیرد و صرفاً به تحلیل داده محدود نیست.
علم داده بر خلاف روش غالب در آمار، معمولاً از جنبهی توصیفی و استنتاجی فاصله میگیرد و میکوشد بر اساس دادههای موجود، به پیشبینی و تجویز بپردازد.
بنابراین بهتر است علم داده را به معنای عامتر در نظر بگیریم و فرض کنیم سایر شاخهها (مثل آمار، داده کاوی و یادگیری ماشینی) دستاوردهای خود را در اختیار علم داده قرار میدهند.
@python_easy_learn
آیا علم داده همان داده کاوی است؟
گاهی اوقات علم داده (Data Science) را با داده کاوی (Data Mining) و گاه با یادگیری ماشین (Machine Learning) مترادف در نظر میگیرند.
گاهی هم پیش میآید که آن را زیرمجموعهی علم آمار فرض میکنند. اما منطقیتر است که برای علم داده تعریف گستردهتری در نظر بگیریم. زیرا:
علم داده ، بر خلاف داده کاوی، تمام فرایند مرتبط با داده، از گردآوری اولیه تا عرضهی محصول مبتنی بر دادهها را در برمیگیرد و صرفاً به تحلیل داده محدود نیست.
علم داده بر خلاف روش غالب در آمار، معمولاً از جنبهی توصیفی و استنتاجی فاصله میگیرد و میکوشد بر اساس دادههای موجود، به پیشبینی و تجویز بپردازد.
بنابراین بهتر است علم داده را به معنای عامتر در نظر بگیریم و فرض کنیم سایر شاخهها (مثل آمار، داده کاوی و یادگیری ماشینی) دستاوردهای خود را در اختیار علم داده قرار میدهند.
@python_easy_learn
🤲🏼سُبْحانَكَ يا لا اِلهَ اِلاّ اَنْتَ الْغَوْثَ الْغَوْثَ خَلِّصْنا مِنَ النّارِ يا رَبِّ🤲🏼
🤲التماس دعا🤲
🤲التماس دعا🤲
فرصت های شغلی بعد از آموزش پایتون
ساخت بازی های رایانه ای
توسعه و ساخت وب
توسعه و ساخت اپلیکیشن
تحلیل پایگاه داده
امنیت ، شبکه و هک
اسکریپت نویسی و خودکارسازی
یادگیری ماشین و علم داده
@python_easy_learn
ساخت بازی های رایانه ای
توسعه و ساخت وب
توسعه و ساخت اپلیکیشن
تحلیل پایگاه داده
امنیت ، شبکه و هک
اسکریپت نویسی و خودکارسازی
یادگیری ماشین و علم داده
@python_easy_learn
چرا باید پایتون یاد بگیریم؟
پایتون یک زبان برنامهنویسی آسان برای افراد مبتدی است تا بتوانند یک برنامهنویس حرفه ای شوند. پایتون یک زبان برنامهنویسی جدید است که یادگیری آن ساده است. تقاضاهای زیادی برای برای یادگیری زبان پایتون وجود دارد. لازم است بدانید که متوسط حقوق یک توسعهدهنده پایتون در ایالات متحده ی آمریکا 102,000 دلار است (مطابق با آمارهای بدست آمده از این وب سایت). از پایتون میتوانید برای فعالیتهای جذاب استفاده کنید، از علوم دیتا گرفته تا ساختن وب سایت.
@python_easy_learn
پایتون یک زبان برنامهنویسی آسان برای افراد مبتدی است تا بتوانند یک برنامهنویس حرفه ای شوند. پایتون یک زبان برنامهنویسی جدید است که یادگیری آن ساده است. تقاضاهای زیادی برای برای یادگیری زبان پایتون وجود دارد. لازم است بدانید که متوسط حقوق یک توسعهدهنده پایتون در ایالات متحده ی آمریکا 102,000 دلار است (مطابق با آمارهای بدست آمده از این وب سایت). از پایتون میتوانید برای فعالیتهای جذاب استفاده کنید، از علوم دیتا گرفته تا ساختن وب سایت.
@python_easy_learn
پایتون چیست؟
پایتون یکی از محبوبترین زبان های برنامهنویسی است که در شرکت های بزرگی مثل گوگل، فیسبوک، اینستاگرام استفاده میشود. این زبان برنامهنویسی به نحوی طراحی شده است که ساده اما بسیار قوی است. بنابراین توصیه میکنیم که هر چه زودتر شروع این زبان برنامهنویسی را آغاز کنید
@python_easy_learn
پایتون یکی از محبوبترین زبان های برنامهنویسی است که در شرکت های بزرگی مثل گوگل، فیسبوک، اینستاگرام استفاده میشود. این زبان برنامهنویسی به نحوی طراحی شده است که ساده اما بسیار قوی است. بنابراین توصیه میکنیم که هر چه زودتر شروع این زبان برنامهنویسی را آغاز کنید
@python_easy_learn
Forwarded from آتی پژوهش امیرکبیر
🎲 دوره فشرده پایتون (آنلاین)
🛫 مناسب برای مهاجرت شغلی یا تحصیلی به #آمریکا، #اروپا و #استرالیا
✅بدون نیاز به دانش قبلی در کد نویسی
🔬9 ساعت آنلاین
🎁هدیه :لینک دانلود 48 ساعت آموزش افلاین
⏱روزهای پنج شنبه و جمعه 30 و 31 اردیبهشت
ساعت 9 تا 15
📋سرفصل
🖥معرفی پایتون،متغیرها، عبارات، دستورات و عملگرها،توابع،شرطی ها و بازگشت،توابع نتیجه دار،تکرار،رشته ها،لیست ها،چند تایی ها،دیکشنری ها،فایل ها،کلاس ها و اشیا, توابع, متدها،مجموعه های اشیا,وراثت, لیست های پیوندی,پشته ها,صف ها,درخت ها
🖥آموزش ماژول های۱:
math, re, random, statistics
🖥آموزش و نصب ماژول های۲:
numpy, pandas, scipy, matplotlib,
pygame
🖥انجام مثال های کاربردی متعدد در زمینه محاسبات علمی/عددی/اماری، کد نویسی چندین بازی, سیستم نوبت دهی و رزرو و...
🧑🏫مدرس: دکتر ذبیح الله ذبیحی - پژوهشگر پسا دکتری و مدرس دانشگاه صنعتی امیرکبیر، پژوهشگر پیشین آزمایشگاه نانوبایو حسگر دانشگاه کامپلوتنسه مادرید، پژوهشگر برتر دانشگاه صنعتی امیرکبیر در سال 96- مدرس دوره های شبیه سازی و نرم افزار های تخصصی
🎥برگزار کننده: شرکت آتی پژوهش امیرکبیر
@kargah2018
📱کانال آکادمی پایتون
@python_easy_learn
📲کانال استخدام پایتون
@python_jobs_announce
📲کانال اپلای
https://t.me/joinchat/R6A3mXMv4fQNyK6h
☎️جهت ثبت نام و کسب اطلاع
@kargah68
🛫 مناسب برای مهاجرت شغلی یا تحصیلی به #آمریکا، #اروپا و #استرالیا
✅بدون نیاز به دانش قبلی در کد نویسی
🔬9 ساعت آنلاین
🎁هدیه :لینک دانلود 48 ساعت آموزش افلاین
⏱روزهای پنج شنبه و جمعه 30 و 31 اردیبهشت
ساعت 9 تا 15
📋سرفصل
🖥معرفی پایتون،متغیرها، عبارات، دستورات و عملگرها،توابع،شرطی ها و بازگشت،توابع نتیجه دار،تکرار،رشته ها،لیست ها،چند تایی ها،دیکشنری ها،فایل ها،کلاس ها و اشیا, توابع, متدها،مجموعه های اشیا,وراثت, لیست های پیوندی,پشته ها,صف ها,درخت ها
🖥آموزش ماژول های۱:
math, re, random, statistics
🖥آموزش و نصب ماژول های۲:
numpy, pandas, scipy, matplotlib,
pygame
🖥انجام مثال های کاربردی متعدد در زمینه محاسبات علمی/عددی/اماری، کد نویسی چندین بازی, سیستم نوبت دهی و رزرو و...
🧑🏫مدرس: دکتر ذبیح الله ذبیحی - پژوهشگر پسا دکتری و مدرس دانشگاه صنعتی امیرکبیر، پژوهشگر پیشین آزمایشگاه نانوبایو حسگر دانشگاه کامپلوتنسه مادرید، پژوهشگر برتر دانشگاه صنعتی امیرکبیر در سال 96- مدرس دوره های شبیه سازی و نرم افزار های تخصصی
🎥برگزار کننده: شرکت آتی پژوهش امیرکبیر
@kargah2018
📱کانال آکادمی پایتون
@python_easy_learn
📲کانال استخدام پایتون
@python_jobs_announce
📲کانال اپلای
https://t.me/joinchat/R6A3mXMv4fQNyK6h
☎️جهت ثبت نام و کسب اطلاع
@kargah68
🥀شهادت امیرالمؤمنین علی (ع) تسلیت باد 🥀
چه خوش است یارب امشب، که خطای ما ببخشی
التماس دعا
@python_easy_learn
چه خوش است یارب امشب، که خطای ما ببخشی
التماس دعا
@python_easy_learn
🎲 دوره فشرده پایتون (آنلاین)
🛫 مناسب برای مهاجرت شغلی یا تحصیلی به #آمریکا، #اروپا و #استرالیا
✅بدون نیاز به دانش قبلی در کد نویسی
🔬9 ساعت آنلاین
🎁هدیه :لینک دانلود 48 ساعت آموزش افلاین
⏱روزهای پنج شنبه و جمعه 30 و 31 اردیبهشت
ساعت 9 تا 15
📋سرفصل
🖥معرفی پایتون،متغیرها، عبارات، دستورات و عملگرها،توابع،شرطی ها و بازگشت،توابع نتیجه دار،تکرار،رشته ها،لیست ها،چند تایی ها،دیکشنری ها،فایل ها،کلاس ها و اشیا, توابع, متدها،مجموعه های اشیا,وراثت, لیست های پیوندی,پشته ها,صف ها,درخت ها
🖥آموزش ماژول های۱:
math, re, random, statistics
🖥آموزش و نصب ماژول های۲:
numpy, pandas, scipy, matplotlib,
pygame
🖥انجام مثال های کاربردی متعدد در زمینه محاسبات علمی/عددی/اماری، کد نویسی چندین بازی, سیستم نوبت دهی و رزرو و...
🧑🏫مدرس: دکتر ذبیح الله ذبیحی - پژوهشگر پسا دکتری و مدرس دانشگاه صنعتی امیرکبیر، پژوهشگر پیشین آزمایشگاه نانوبایو حسگر دانشگاه کامپلوتنسه مادرید، پژوهشگر برتر دانشگاه صنعتی امیرکبیر در سال 96- مدرس دوره های شبیه سازی و نرم افزار های تخصصی
🎥برگزار کننده: شرکت آتی پژوهش امیرکبیر
@kargah2018
📱کانال آکادمی پایتون
@python_easy_learn
📲کانال استخدام پایتون
@python_jobs_announce
📲کانال اپلای
https://t.me/joinchat/R6A3mXMv4fQNyK6h
☎️جهت ثبت نام و کسب اطلاع
@kargah68
🛫 مناسب برای مهاجرت شغلی یا تحصیلی به #آمریکا، #اروپا و #استرالیا
✅بدون نیاز به دانش قبلی در کد نویسی
🔬9 ساعت آنلاین
🎁هدیه :لینک دانلود 48 ساعت آموزش افلاین
⏱روزهای پنج شنبه و جمعه 30 و 31 اردیبهشت
ساعت 9 تا 15
📋سرفصل
🖥معرفی پایتون،متغیرها، عبارات، دستورات و عملگرها،توابع،شرطی ها و بازگشت،توابع نتیجه دار،تکرار،رشته ها،لیست ها،چند تایی ها،دیکشنری ها،فایل ها،کلاس ها و اشیا, توابع, متدها،مجموعه های اشیا,وراثت, لیست های پیوندی,پشته ها,صف ها,درخت ها
🖥آموزش ماژول های۱:
math, re, random, statistics
🖥آموزش و نصب ماژول های۲:
numpy, pandas, scipy, matplotlib,
pygame
🖥انجام مثال های کاربردی متعدد در زمینه محاسبات علمی/عددی/اماری، کد نویسی چندین بازی, سیستم نوبت دهی و رزرو و...
🧑🏫مدرس: دکتر ذبیح الله ذبیحی - پژوهشگر پسا دکتری و مدرس دانشگاه صنعتی امیرکبیر، پژوهشگر پیشین آزمایشگاه نانوبایو حسگر دانشگاه کامپلوتنسه مادرید، پژوهشگر برتر دانشگاه صنعتی امیرکبیر در سال 96- مدرس دوره های شبیه سازی و نرم افزار های تخصصی
🎥برگزار کننده: شرکت آتی پژوهش امیرکبیر
@kargah2018
📱کانال آکادمی پایتون
@python_easy_learn
📲کانال استخدام پایتون
@python_jobs_announce
📲کانال اپلای
https://t.me/joinchat/R6A3mXMv4fQNyK6h
☎️جهت ثبت نام و کسب اطلاع
@kargah68
#نذر_آموزشی
آموزش پایتون در 90 دقیقه
جهت در یافت فایل آموزش به آیدی زیر پیام دهید👇👇
@kargah67
@python_easy_learn
آموزش پایتون در 90 دقیقه
جهت در یافت فایل آموزش به آیدی زیر پیام دهید👇👇
@kargah67
@python_easy_learn