🎮 Учимся Python прямо в бою — в Steam бесплатно раздают CodeStrike!
Это не просто игра — это шпионский экшен, где ты решаешь всё кодом.
В CodeStrike ты — элитный агент, действующий в мире, захваченном ИИ и алчными корпорациями.
💻 Что тебя ждёт:
• Пишешь Python-код
• Ломаешь системы, обходишь ловушки, взрываешь и взламываешь
• Программируешь поведение героя в реальном времени
• Участвуешь в гонках, сражениях и выживании — только с помощью кода
Это как если бы *Metal (https://vk.com/id644247) Gear* встретился с *LeetCode* — но весело.
🐍 Прокачай Python, даже не замечая, как учишься.
⚡ Вкатиться можно здесь: https://store.steampowered.com/app/3444170/CodeStrike__Python_Practice_Adventure_Game/
@python_be1
Это не просто игра — это шпионский экшен, где ты решаешь всё кодом.
В CodeStrike ты — элитный агент, действующий в мире, захваченном ИИ и алчными корпорациями.
💻 Что тебя ждёт:
• Пишешь Python-код
• Ломаешь системы, обходишь ловушки, взрываешь и взламываешь
• Программируешь поведение героя в реальном времени
• Участвуешь в гонках, сражениях и выживании — только с помощью кода
Это как если бы *Metal (https://vk.com/id644247) Gear* встретился с *LeetCode* — но весело.
🐍 Прокачай Python, даже не замечая, как учишься.
⚡ Вкатиться можно здесь: https://store.steampowered.com/app/3444170/CodeStrike__Python_Practice_Adventure_Game/
@python_be1
Индус-программист целый месяц ничего не делал на работе (потому что выгорел), а потом за день сгенерировал (https://economictimes.indiatimes.com/magazines/panache/techie-admits-to-faking-work-for-a-month-just-before-getting-fired-ai-saved-him/articleshow/121616818.cms?from=mdr) 4000 строк кода в Cursor и получил похвалу 😂
Парень уже готовился к увольнению, но код вдруг заработал без ошибок, менеджер оказался доволен демо и даже похвалил вайб-индуса.
Повторять строго не рекомендую 😁
@python_be1
Парень уже готовился к увольнению, но код вдруг заработал без ошибок, менеджер оказался доволен демо и даже похвалил вайб-индуса.
Повторять строго не рекомендую 😁
@python_be1
🎓 Модульный учебник по Python для Middle-разработчиков
Этот учебник создан для тех, кто уже пишет на Python, но хочет выйти за рамки базовых конструкций. Здесь — практичные модули с упором на архитектуру, производительность, тестирование, чистый код и современные практики разработки.
🔧 Каждый модуль — это отдельный блок знаний: теория + реальные кейсы + трюки из индустрии.
🎯 Только то, что реально нужно миддлу: от дебага и профилирования до async, typing, CI/CD и LLM-интеграций.
Без воды. С кодом. По делу.
📚 Читать (https://uproger.com/modulnyj-uchebnik-python-dlya-razrabotchikov-urovnya-middle/)
@python_be1
Этот учебник создан для тех, кто уже пишет на Python, но хочет выйти за рамки базовых конструкций. Здесь — практичные модули с упором на архитектуру, производительность, тестирование, чистый код и современные практики разработки.
🔧 Каждый модуль — это отдельный блок знаний: теория + реальные кейсы + трюки из индустрии.
🎯 Только то, что реально нужно миддлу: от дебага и профилирования до async, typing, CI/CD и LLM-интеграций.
Без воды. С кодом. По делу.
📚 Читать (https://uproger.com/modulnyj-uchebnik-python-dlya-razrabotchikov-urovnya-middle/)
@python_be1
🗣 Голосовой AI-ассистент на Python (Streamlit, Whisper, ChatGPT, TTS)
Пишем готовий проект на Python.
Проект объединяет несколько компонентов:
- Распознавание речи: отправка аудио на OpenAI Whisper API (модель whisper-1) для транскрипции русской речиkdnuggets.com.
- Генерация ответа: отправка полученного текста в OpenAI ChatCompletion (модель gpt-3.5-turbo) для получения ответа в виде текстаgokhang1327.medium.com.
- Синтез речи (TTS): два варианта генерации звука из текста: платный сервис ElevenLabs (реалистичные голоса, поддержка русского) и открытая модель Silero TTS (бесплатная, поддерживает русский)github.comgithub.com.
- Интерфейс: веб-приложение на Streamlit с виджетом записи аудио (микрофон) и областью для отображения распознанного текста и ответа.
Ниже приведён подробный код приложения и инструкции по его запуску.
Читать: https://uproger.com/golosovoj-ai-assistent-na-python-streamlit-whisper-chatgpt-tts/
@python_be1
Пишем готовий проект на Python.
Проект объединяет несколько компонентов:
- Распознавание речи: отправка аудио на OpenAI Whisper API (модель whisper-1) для транскрипции русской речиkdnuggets.com.
- Генерация ответа: отправка полученного текста в OpenAI ChatCompletion (модель gpt-3.5-turbo) для получения ответа в виде текстаgokhang1327.medium.com.
- Синтез речи (TTS): два варианта генерации звука из текста: платный сервис ElevenLabs (реалистичные голоса, поддержка русского) и открытая модель Silero TTS (бесплатная, поддерживает русский)github.comgithub.com.
- Интерфейс: веб-приложение на Streamlit с виджетом записи аудио (микрофон) и областью для отображения распознанного текста и ответа.
Ниже приведён подробный код приложения и инструкции по его запуску.
Читать: https://uproger.com/golosovoj-ai-assistent-na-python-streamlit-whisper-chatgpt-tts/
@python_be1
This media is not supported in your browser
VIEW IN TELEGRAM
🎥 Self Forcing: генерация видео в реальном времени с RTX 4090
Новая техника Self Forcing позволяет обучать видеодиффузионные модели "думать как на инференсе" ещё во время обучения.
🧠 Что делает:
▪️ Имитирует autoregressive-инференс с KV-кэшированием прямо во время обучения
▪️ Устраняет расхождение train/test distributions
▪️ Достигает качества SOTA-моделей, но с реальным временем генерации
▪️ Работает даже на одной RTX 4090
⚙️ Требования:
• GPU с 24 GB+ памяти (4090 / A100 / H100 протестированы)
• Linux
• 64 GB RAM
• Другие конфигурации могут работать, но не проверялись
📌 Выход: стриминговое видео — кадр за кадром, без задержек, на одном потребительском GPU.
💡 Self Forcing — шаг к видеогенерации без лага и мегакластеров.
📦 Основан нп Wan 2.1
💻 Требования: минимум 24 ГБ VRAM и 64 ГБ RAM
🧪 Код открыт, всё работает (пока) только под Linux
Github (https://github.com/assetnote/newtowner)
@python_be1
Новая техника Self Forcing позволяет обучать видеодиффузионные модели "думать как на инференсе" ещё во время обучения.
🧠 Что делает:
▪️ Имитирует autoregressive-инференс с KV-кэшированием прямо во время обучения
▪️ Устраняет расхождение train/test distributions
▪️ Достигает качества SOTA-моделей, но с реальным временем генерации
▪️ Работает даже на одной RTX 4090
⚙️ Требования:
• GPU с 24 GB+ памяти (4090 / A100 / H100 протестированы)
• Linux
• 64 GB RAM
• Другие конфигурации могут работать, но не проверялись
📌 Выход: стриминговое видео — кадр за кадром, без задержек, на одном потребительском GPU.
💡 Self Forcing — шаг к видеогенерации без лага и мегакластеров.
📦 Основан нп Wan 2.1
💻 Требования: минимум 24 ГБ VRAM и 64 ГБ RAM
🧪 Код открыт, всё работает (пока) только под Linux
Github (https://github.com/assetnote/newtowner)
@python_be1
🖥 Two Claps Open — инструмент, который открывает Chrome или активирует голосового помощника, когда пользователь хлопает в ладоши два раза 👏
💬 Как это работает:
• Слушает микрофон через pyaudio
• Реагирует на два быстрых хлопка подряд
• Открывает браузер или помощника
Возможности зависят только от фантазии:
• Включай музыку или YouTube по хлопку
• Открывай рабочий дашборд при запуске ПК
• Управляй умным домом — включай свет или открывай дверь хлопком
Чтобы понять, как "выглядит" хлопок в аудиосигнале, разработчик записал его и провёл преобразование Фурье. Оказалось, что основная энергия хлопка сосредоточена в диапазоне 1.4–1.8 кГц. Дальше был настроен полосовой фильтр, чтобы выделять только этот диапазон и отсекать шум.
После фильтрации система отслеживает пики в сигнале. Если зафиксировано три хлопка подряд с минимальным интервалом, автоматически запускается Chrome (или любая команда на ваш выбор).
Реализуется в реальном времени — просто и удобно для управления без рук!
▪ Github (https://github.com/Yutarop/two_claps_open)
@python_be1
💬 Как это работает:
• Слушает микрофон через pyaudio
• Реагирует на два быстрых хлопка подряд
• Открывает браузер или помощника
Возможности зависят только от фантазии:
• Включай музыку или YouTube по хлопку
• Открывай рабочий дашборд при запуске ПК
• Управляй умным домом — включай свет или открывай дверь хлопком
Чтобы понять, как "выглядит" хлопок в аудиосигнале, разработчик записал его и провёл преобразование Фурье. Оказалось, что основная энергия хлопка сосредоточена в диапазоне 1.4–1.8 кГц. Дальше был настроен полосовой фильтр, чтобы выделять только этот диапазон и отсекать шум.
После фильтрации система отслеживает пики в сигнале. Если зафиксировано три хлопка подряд с минимальным интервалом, автоматически запускается Chrome (или любая команда на ваш выбор).
Реализуется в реальном времени — просто и удобно для управления без рук!
▪ Github (https://github.com/Yutarop/two_claps_open)
@python_be1
GitHub
GitHub - Yutarop/two_claps_open: Open Chrome (or any file/app) by just clapping twice
Open Chrome (or any file/app) by just clapping twice - Yutarop/two_claps_open
This media is not supported in your browser
VIEW IN TELEGRAM
⚡️ MicroVMS — новая платформа для запуска кода от AI-агентов с максимальной безопасностью и скоростью.
В отличие от Docker и других тяжелых решений, MicroVMS использует легковесные песочницы для быстрой изоляции, мгновенного старта и простого управления.
● Поддержка разных сред: Python, Node.js и другие
● Идеально для AI-агентов — разработка и запуск без лишних сложностей
● Удобная система управления проектами — настройка песочниц в пару кликов
Если вы хотите запускать код AI-агентов быстро, безопасно и удобно — обратите внимание на MicroVMS.
`pip install microsandbox`
🔗 Github (https://github.com/microsandbox/microsandbox)
@python_be1
В отличие от Docker и других тяжелых решений, MicroVMS использует легковесные песочницы для быстрой изоляции, мгновенного старта и простого управления.
● Поддержка разных сред: Python, Node.js и другие
● Идеально для AI-агентов — разработка и запуск без лишних сложностей
● Удобная система управления проектами — настройка песочниц в пару кликов
Если вы хотите запускать код AI-агентов быстро, безопасно и удобно — обратите внимание на MicroVMS.
`pip install microsandbox`
🔗 Github (https://github.com/microsandbox/microsandbox)
@python_be1
✔️Пять нейросетей — один вопрос. Спорят до идеального ответа.**
Разработчики запустили Nexus of Mind — платформу, где сразу *пять* топовых ИИ дискутируют над вашим вопросом, чтобы выдать на выходе максимально точный, согласованный и аргументированный ответ.
🔥 Что внутри:
• В одном чате — ChatGPT, Gemini, DeepSeek, LLaMA и Cohere
• Моде
https://nexusofmind.world/
@python_be1
Разработчики запустили Nexus of Mind — платформу, где сразу *пять* топовых ИИ дискутируют над вашим вопросом, чтобы выдать на выходе максимально точный, согласованный и аргументированный ответ.
🔥 Что внутри:
• В одном чате — ChatGPT, Gemini, DeepSeek, LLaMA и Cohere
• Моде
https://nexusofmind.world/
@python_be1
🚀 Pipedream — платформа для создания интеграций и автоматизаций между сервисами. Этот инструмент позволяет соединять более 1000 приложений через готовые компоненты или собственный код на Node.js, Python, Go и Bash.
Главное преимущество проекта — это гибкость: можно быстро настроить триггеры и цепочки действий без сложной инфраструктуры. Для кастомных сценариев доступно выполнение произвольного кода с подключением любых npm/pip-пакетов. Интеграции развертываются в облаке Pipedream, что избавляет от необходимости настраивать серверы.
🤖 GitHub (https://github.com/PipedreamHQ/pipedream)
@python_be1
Главное преимущество проекта — это гибкость: можно быстро настроить триггеры и цепочки действий без сложной инфраструктуры. Для кастомных сценариев доступно выполнение произвольного кода с подключением любых npm/pip-пакетов. Интеграции развертываются в облаке Pipedream, что избавляет от необходимости настраивать серверы.
🤖 GitHub (https://github.com/PipedreamHQ/pipedream)
@python_be1
🚀 TurboDRF — ускоритель Django REST Framework без боли
TurboDRF — лёгкий способ ускорить ваш Django API без перехода на FastAPI или переписывания логики.
🔥 Что даёт TurboDRF:
• ⚡ Быстрый рендер сериализаторов
• 🧠 Автоматический `prefetch_related` и `select_related`
• 🧊 Кэширование сериализованных ответов
• 🧩 Совместим с обычными DRF-сериализаторами
📦 Установка:
`pip install turbodrf`
🛠️ Пример:
```
from turbodrf.mixins import TurboModelSerializer
class MySerializer(TurboModelSerializer):
class Meta:
model = MyModel
fields = "__all__"
```
✅ Идеален для больших Django-проектов, где важна скорость ответа.
🔗 GitHub: https://github.com/alexandercollins/turbodrf
@python_be1
TurboDRF — лёгкий способ ускорить ваш Django API без перехода на FastAPI или переписывания логики.
🔥 Что даёт TurboDRF:
• ⚡ Быстрый рендер сериализаторов
• 🧠 Автоматический `prefetch_related` и `select_related`
• 🧊 Кэширование сериализованных ответов
• 🧩 Совместим с обычными DRF-сериализаторами
📦 Установка:
`pip install turbodrf`
🛠️ Пример:
```
from turbodrf.mixins import TurboModelSerializer
class MySerializer(TurboModelSerializer):
class Meta:
model = MyModel
fields = "__all__"
```
✅ Идеален для больших Django-проектов, где важна скорость ответа.
🔗 GitHub: https://github.com/alexandercollins/turbodrf
@python_be1