This media is not supported in your browser
VIEW IN TELEGRAM
⭐️ Давным-давно в терминале, в далекой-далекой Галактике…
May the 4th be with you: 4 мая — неофициальный день «Звёздных войн».
ASCII Movie - это проект с открытым исходным кодом, который будет «транслировать» оригинальный фильм «Звёздные войны» (эпизод IV) в виде ASCII-графики прямо в ваш терминал, используя протоколы SSH или Telnet.
Сервис реализован на языке Go и снабжён простым текстовым интерфейсом с поддержкой клавиатуры и мыши, а также доступен в виде Docker-контейнера.
`sudo docker run —rm -it ghcr.io/gabe565/ascii-movie play`
По SSH. #MayThe4th
http://github.com/gabe565/ascii-movie
@python_be1
May the 4th be with you: 4 мая — неофициальный день «Звёздных войн».
ASCII Movie - это проект с открытым исходным кодом, который будет «транслировать» оригинальный фильм «Звёздные войны» (эпизод IV) в виде ASCII-графики прямо в ваш терминал, используя протоколы SSH или Telnet.
Сервис реализован на языке Go и снабжён простым текстовым интерфейсом с поддержкой клавиатуры и мыши, а также доступен в виде Docker-контейнера.
`sudo docker run —rm -it ghcr.io/gabe565/ascii-movie play`
По SSH. #MayThe4th
http://github.com/gabe565/ascii-movie
@python_be1
✍️ novelWriter — минималистичный редактор для писателей с поддержкой Markdown. Проект использует облегченный синтаксис на основе Markdown и сохраняет все данные в виде обычных текстовых файлов, что делает его идеальным для работы с системами контроля версий.
Инструмент делает акцент на простоте и надежности. Вместо проприетарных форматов он использует чистый текст с метаданными в JSON. Редактор написан на Python с использованием Qt6 и доступен для всех основных ОС. При этом проект остается полностью открытым и принимает contributions, особенно в части переводов через Crowdin.
🤖 GitHub (https://github.com/vkbo/novelWriter)
@python_be1
Инструмент делает акцент на простоте и надежности. Вместо проприетарных форматов он использует чистый текст с метаданными в JSON. Редактор написан на Python с использованием Qt6 и доступен для всех основных ОС. При этом проект остается полностью открытым и принимает contributions, особенно в части переводов через Crowdin.
🤖 GitHub (https://github.com/vkbo/novelWriter)
@python_be1
🐳 Как устроен Docker: что происходит «под капотом»
Поговорим немного про базу.
Docker — одно из самых популярных средств контейнеризации. Его простота снаружи скрывает сложную архитектуру. Разберём, как он устроен внутри.
1) Что такое контейнер?
Контейнер — изолированная среда, где запускается приложение со всеми зависимостями.
⚠️ Это не виртуальная машина: контейнер делит ядро ОС с хостом, но видит только свою «песочницу» через изоляцию.
2) Основные компоненты
• Docker Engine
– Docker Daemon (`dockerd`) управляет контейнерами, образами, сетями
– Docker CLI (`docker`) — интерфейс пользователя
– REST API — взаимодействие CLI и Daemon
👉 Пример: `docker run nginx` → CLI отправляет запрос, Daemon находит образ, создаёт контейнер, запускает процесс.
3) Namespaces
Механизм изоляции в Linux, создающий для контейнера:
• свой процессный ID (pid namespace)
• файловую систему (mnt namespace)
• сеть (net namespace)
• hostname (uts namespace)
• IPC (ipc namespace)
👉 Благодаря namespace контейнер видит «свою» мини-ОС, хотя на деле — это лишь виртуальные границы.
4) Cgroups
Ограничивают и учитывают ресурсы (CPU, RAM, I/O, сеть).
Пример: можно задать лимит 512 МБ RAM и 0.5 CPU.
Если приложение превышает лимит — Docker его ограничит или остановит.
5) Union File Systems (OverlayFS)
Docker использует многослойную файловую систему. Каждый шаг `Dockerfile` создаёт новый слой.
При запуске контейнера создаётся верхний writable-слой, остальные read-only.
👉 10 контейнеров на одном образе разделяют слои → экономия места.
6) Container Runtime
Docker использует `runc` для запуска контейнера (соответствует OCI Runtime Spec).
Daemon вызывает `runc`, который через `clone()`, `setns()`, `chroot()` изолирует процесс.
7) Docker Images
Образ — read-only слои, собранные в Union FS.
Каждый слой — изменения относительно предыдущего (например, установка пакета → новый слой).
Хранение: локально (`/var/lib/docker`) или в реестре (Docker Hub, GitLab Container Registry).
8) Docker Networking
Docker создаёт виртуальные сети (bridge, overlay, host).
По умолчанию контейнеры подключаются к bridge и получают IP из внутреннего пула.
👉 Можно пробросить порты через `-p`, создать собственные сети, объединять контейнеры через `docker network connect`.
В Swarm используется Overlay network (сеть между хостами).
9) Безопасность
Docker использует:
• seccomp (ограничение системных вызовов)
• AppArmor / SELinux (контроль привилегий)
• user namespaces (отображение UID контейнера в другой UID хоста)
⚠️ По умолчанию контейнеры имеют широкий доступ (например, `/proc` виден). Для production стоит ограничивать права (например, `--cap-drop`).
10) Что происходит при `docker run nginx`?
1. CLI отправляет запрос через API
2. Daemon ищет образ (локально или в registry)
3. Создаётся read-write слой контейнера
4. Создаются namespace (pid, net, mnt…)
5. Применяются cgroups
6. Вызывается `runc` для изоляции процесса
7. Контейнер подключается к сети
8. Запускается ENTRYPOINT/command
Контейнер живёт, пока жив его процесс.
11) Почему Docker — не магия?
Docker использует стандартные возможности ядра Linux (namespaces, cgroups, chroot, seccomp, overlayfs), оборачивая их в удобный интерфейс.
Контейнер — просто изолированный процесс, а не полноценная VM.
Поэтому Docker лёгкий, быстрый, удобный.
12) Заключение
Под капотом Docker:
• namespaces — изоляция
• cgroups — контроль ресурсов
• runc — запуск
• overlayfs — многослойная ФС
• REST API + Daemon + CLI — взаимодействие
Docker скрывает сложность, давая простой инструмент для запуска, сборки, развёртывания приложений.
Теперь, зная внутреннее устройство, можно глубже понять контейнеры, лучше их настраивать и оптимизировать.
➡️ Подробнее (https://uproger.com/kak-ustroen-docker-chto-proishodit-pod-kapotom/)
@python_be1
Поговорим немного про базу.
Docker — одно из самых популярных средств контейнеризации. Его простота снаружи скрывает сложную архитектуру. Разберём, как он устроен внутри.
1) Что такое контейнер?
Контейнер — изолированная среда, где запускается приложение со всеми зависимостями.
⚠️ Это не виртуальная машина: контейнер делит ядро ОС с хостом, но видит только свою «песочницу» через изоляцию.
2) Основные компоненты
• Docker Engine
– Docker Daemon (`dockerd`) управляет контейнерами, образами, сетями
– Docker CLI (`docker`) — интерфейс пользователя
– REST API — взаимодействие CLI и Daemon
👉 Пример: `docker run nginx` → CLI отправляет запрос, Daemon находит образ, создаёт контейнер, запускает процесс.
3) Namespaces
Механизм изоляции в Linux, создающий для контейнера:
• свой процессный ID (pid namespace)
• файловую систему (mnt namespace)
• сеть (net namespace)
• hostname (uts namespace)
• IPC (ipc namespace)
👉 Благодаря namespace контейнер видит «свою» мини-ОС, хотя на деле — это лишь виртуальные границы.
4) Cgroups
Ограничивают и учитывают ресурсы (CPU, RAM, I/O, сеть).
Пример: можно задать лимит 512 МБ RAM и 0.5 CPU.
Если приложение превышает лимит — Docker его ограничит или остановит.
5) Union File Systems (OverlayFS)
Docker использует многослойную файловую систему. Каждый шаг `Dockerfile` создаёт новый слой.
При запуске контейнера создаётся верхний writable-слой, остальные read-only.
👉 10 контейнеров на одном образе разделяют слои → экономия места.
6) Container Runtime
Docker использует `runc` для запуска контейнера (соответствует OCI Runtime Spec).
Daemon вызывает `runc`, который через `clone()`, `setns()`, `chroot()` изолирует процесс.
7) Docker Images
Образ — read-only слои, собранные в Union FS.
Каждый слой — изменения относительно предыдущего (например, установка пакета → новый слой).
Хранение: локально (`/var/lib/docker`) или в реестре (Docker Hub, GitLab Container Registry).
8) Docker Networking
Docker создаёт виртуальные сети (bridge, overlay, host).
По умолчанию контейнеры подключаются к bridge и получают IP из внутреннего пула.
👉 Можно пробросить порты через `-p`, создать собственные сети, объединять контейнеры через `docker network connect`.
В Swarm используется Overlay network (сеть между хостами).
9) Безопасность
Docker использует:
• seccomp (ограничение системных вызовов)
• AppArmor / SELinux (контроль привилегий)
• user namespaces (отображение UID контейнера в другой UID хоста)
⚠️ По умолчанию контейнеры имеют широкий доступ (например, `/proc` виден). Для production стоит ограничивать права (например, `--cap-drop`).
10) Что происходит при `docker run nginx`?
1. CLI отправляет запрос через API
2. Daemon ищет образ (локально или в registry)
3. Создаётся read-write слой контейнера
4. Создаются namespace (pid, net, mnt…)
5. Применяются cgroups
6. Вызывается `runc` для изоляции процесса
7. Контейнер подключается к сети
8. Запускается ENTRYPOINT/command
Контейнер живёт, пока жив его процесс.
11) Почему Docker — не магия?
Docker использует стандартные возможности ядра Linux (namespaces, cgroups, chroot, seccomp, overlayfs), оборачивая их в удобный интерфейс.
Контейнер — просто изолированный процесс, а не полноценная VM.
Поэтому Docker лёгкий, быстрый, удобный.
12) Заключение
Под капотом Docker:
• namespaces — изоляция
• cgroups — контроль ресурсов
• runc — запуск
• overlayfs — многослойная ФС
• REST API + Daemon + CLI — взаимодействие
Docker скрывает сложность, давая простой инструмент для запуска, сборки, развёртывания приложений.
Теперь, зная внутреннее устройство, можно глубже понять контейнеры, лучше их настраивать и оптимизировать.
➡️ Подробнее (https://uproger.com/kak-ustroen-docker-chto-proishodit-pod-kapotom/)
@python_be1
👩💻 datasketch (https://github.com/ekzhu/datasketch) — Python-библиотека, содержащая реализации вероятностных структур данных, которые используются для оптимизации работы с большими объемами данных!
🌟 Среди основных возможностей — оценка схожести Jaccard с помощью MinHash и его взвешенной версии, а также оценка кардинальности множества с помощью HyperLogLog и HyperLogLog++. Эти структуры данных позволяют выполнять операции, такие как поиск схожих элементов или подсчет уникальных объектов, быстро и с минимальными затратами памяти.
🔐 Лицензия: MIT
🖥 Github (https://github.com/ekzhu/datasketch)
@python_be1
🌟 Среди основных возможностей — оценка схожести Jaccard с помощью MinHash и его взвешенной версии, а также оценка кардинальности множества с помощью HyperLogLog и HyperLogLog++. Эти структуры данных позволяют выполнять операции, такие как поиск схожих элементов или подсчет уникальных объектов, быстро и с минимальными затратами памяти.
🔐 Лицензия: MIT
🖥 Github (https://github.com/ekzhu/datasketch)
@python_be1
This media is not supported in your browser
VIEW IN TELEGRAM
🔥 AgenticSeek — мощнейший опенсорс ИИ-агент.
Это лучшая бесплатная альтернатива Manus AI за 200$. Есть всё, что нужно — поиск по интернету, поддержка голосового управления + он хороший помощник по кодингу.
И он умеет почти всё:
• Спланирует тур за границу: подберёт билеты, отели, маршруты
• Проведёт аудит бизнеса и предложит варианты оптимизации
• Возьмёт на себя работу в таблицах, анализ данных и отчётов
• Напишет код под любую задачу
• Прочитает книги, статьи, репозитории, просёрфит сайты и соберёт данные
• А теперь представьте: вы даёте ему сотню таких задач одновременно — это уже не ассистент, а полноценный бизнес-комбайн
AgenticSeek полностью управляет браузером и приложениями, интегрируется в ваши процессы и автоматически подбирает агентов под задачи.
✅ Управлять можно голосом
✅ Все приватные данные остаются только у вас
На GitHub уже 1800 звезд.
https://github.com/Fosowl/agenticSeek
@python_be1
Это лучшая бесплатная альтернатива Manus AI за 200$. Есть всё, что нужно — поиск по интернету, поддержка голосового управления + он хороший помощник по кодингу.
И он умеет почти всё:
• Спланирует тур за границу: подберёт билеты, отели, маршруты
• Проведёт аудит бизнеса и предложит варианты оптимизации
• Возьмёт на себя работу в таблицах, анализ данных и отчётов
• Напишет код под любую задачу
• Прочитает книги, статьи, репозитории, просёрфит сайты и соберёт данные
• А теперь представьте: вы даёте ему сотню таких задач одновременно — это уже не ассистент, а полноценный бизнес-комбайн
AgenticSeek полностью управляет браузером и приложениями, интегрируется в ваши процессы и автоматически подбирает агентов под задачи.
✅ Управлять можно голосом
✅ Все приватные данные остаются только у вас
На GitHub уже 1800 звезд.
https://github.com/Fosowl/agenticSeek
@python_be1
📜 История SQL — от лабораторной идеи до «языка данных» № 1
Как появился самый известный язык работы с базами, почему он едва не остался «Сиквелом» и какие любопытные факты о нём редко всплывают в учебниках.
1. Всё началось с таблицы на бумаге
- 1970 г. — британский математик Эдгар Ф. Кодд публикует культовую статью *“A Relational Model of Data for Large Shared Data Banks”*.
- В ней впервые прозвучала идея: хранить данные в виде связанных таблиц, а не как запутанные иерархии (IMS) или сетевые графы (Codasyl).
- Коллеги в IBM скептически называли это «бумагой на буквы», но разрешили сделать прототип, чтобы проверить утопию Кодда на практике.
2. SEQUEL — «английский» запрос к таблицам
- 1973–1974 гг. — в лаборатории IBM San José (ныне Almaden) двое молодых исследователей, Дональд Чемберлин и Рэймонд Бойс, берутся за проект System R.
- Чтобы обращаться к реляционным таблицам, они придумывают Structured English QUEry Language — SEQUEL.
- Ключевая фишка — запросы выглядят почти как английские предложения:
SELECT name, salary
FROM employees
WHERE dept = 'R&D';
- В 1974‑м публикуют первую спецификацию; академики критикуют за «слишком поверхностный английский», но программисты в восторге.
3. Почему SEQUEL стал SQL
- Торговая марка “SEQUEL” уже принадлежала авиастроительной компании *Hawker (https://vk.com/id378057) Siddeley*.
- IBM, опасаясь суда, в 1976 г. официально отказывается от «E» и оставляет SQL (Structured Query Language).
- *Небольшая путаница осталась навсегда: кто‑то произносит «эс‑кью‑эл», кто‑то — «сиквел».*
4. Коммерческий взлёт
- 1978 | Первая демонстрация System R внутри IBM | показала, что SQL работает быстрее ожиданий |
- 1979 | Стартап Relational Software (позже Oracle**) выпускает **Oracle V2 — первый коммерческий SQL‑движок | IBM ещё не успела выйти на рынок
- 1981 | IBM выпускает SQL/DS для мейнфреймов | стандарт де‑факто закрепляется
- 1983 | Дебют DB2 — теперь SQL есть почти в каждом крупном банке
5. Стандартизация и эволюция
- ANSI SQL‑86 → SQL‑92 (появился `JOIN ... ON`) → SQL:1999 (рекурсия, триггеры) → SQL:2003 (XML) → … → SQL:2023 (JSON, property graphs).
- Каждые 3–5 лет комитет добавляет «модные» возможности, но 90 % повседневных запросов всё ещё укладываются в синтаксис 1980‑х.
6. Забавные факты, которые украсят small talk 🍸
1. NULL ≠ 0 и NULL ≠ NULL — «неизвестное значение» нарушает законы логики, за что его зовут *“пятой ногой”* реляционной алгебры.
2. `SELECT *` — наследие печати на станке. Звёздочка означала «все колонки», чтобы не писать их руками в 132‑символьных перфокартах.
3. Команда `GO` в MS SQL Server не принадлежит стандарту SQL — это директива из старого клиента isql.
4. В Oracle долго не было `LIMIT`, а в MySQL — `RIGHT JOIN`. Поэтому админы шутили: «истинный межплатформенный SQL — это `SELECT 1;`».
5. Первый SQL‑вирус — червь *Slammer* (2003) — парализовал интернет за 10 минут через уязвимость в SQL Server 2000.
6. SQL — декларативный язык, но внутри СУБД каждый SELECT превращается в процедурный план.
7. `DROP DATABASE` придумали позже, чем `CREATE`. Сначала удалять целую БД казалось слишком опасным.
7. Почему SQL живёт дольше модных NoSQL‑наследников
- Математическая база. Таблицы + операции Кодда образуют алгебру с предсказуемой оптимизацией.
- Стандарты и переносимость. Код двадцатилетней давности можно запустить в современной Postgres или MariaDB.
- Большая экосистема. От Excel‑плагинов до BigQuery — везде так или иначе поддерживается SQL‑диалект.
- Сопротивляемость моде. Каждый «убийца SQL» (MapReduce, GraphQL, документные БД) в итоге добавляет свой адаптер SELECT ….
Итог: SQL родился как эксперимент IBM, пережил смену названий и юридические баталии, но в итоге стал «лентой Мёбиуса» мира данных: можно зайти с любой стороны — и всё равно окажешься в FROM.
@python_be1
Как появился самый известный язык работы с базами, почему он едва не остался «Сиквелом» и какие любопытные факты о нём редко всплывают в учебниках.
1. Всё началось с таблицы на бумаге
- 1970 г. — британский математик Эдгар Ф. Кодд публикует культовую статью *“A Relational Model of Data for Large Shared Data Banks”*.
- В ней впервые прозвучала идея: хранить данные в виде связанных таблиц, а не как запутанные иерархии (IMS) или сетевые графы (Codasyl).
- Коллеги в IBM скептически называли это «бумагой на буквы», но разрешили сделать прототип, чтобы проверить утопию Кодда на практике.
2. SEQUEL — «английский» запрос к таблицам
- 1973–1974 гг. — в лаборатории IBM San José (ныне Almaden) двое молодых исследователей, Дональд Чемберлин и Рэймонд Бойс, берутся за проект System R.
- Чтобы обращаться к реляционным таблицам, они придумывают Structured English QUEry Language — SEQUEL.
- Ключевая фишка — запросы выглядят почти как английские предложения:
SELECT name, salary
FROM employees
WHERE dept = 'R&D';
- В 1974‑м публикуют первую спецификацию; академики критикуют за «слишком поверхностный английский», но программисты в восторге.
3. Почему SEQUEL стал SQL
- Торговая марка “SEQUEL” уже принадлежала авиастроительной компании *Hawker (https://vk.com/id378057) Siddeley*.
- IBM, опасаясь суда, в 1976 г. официально отказывается от «E» и оставляет SQL (Structured Query Language).
- *Небольшая путаница осталась навсегда: кто‑то произносит «эс‑кью‑эл», кто‑то — «сиквел».*
4. Коммерческий взлёт
- 1978 | Первая демонстрация System R внутри IBM | показала, что SQL работает быстрее ожиданий |
- 1979 | Стартап Relational Software (позже Oracle**) выпускает **Oracle V2 — первый коммерческий SQL‑движок | IBM ещё не успела выйти на рынок
- 1981 | IBM выпускает SQL/DS для мейнфреймов | стандарт де‑факто закрепляется
- 1983 | Дебют DB2 — теперь SQL есть почти в каждом крупном банке
5. Стандартизация и эволюция
- ANSI SQL‑86 → SQL‑92 (появился `JOIN ... ON`) → SQL:1999 (рекурсия, триггеры) → SQL:2003 (XML) → … → SQL:2023 (JSON, property graphs).
- Каждые 3–5 лет комитет добавляет «модные» возможности, но 90 % повседневных запросов всё ещё укладываются в синтаксис 1980‑х.
6. Забавные факты, которые украсят small talk 🍸
1. NULL ≠ 0 и NULL ≠ NULL — «неизвестное значение» нарушает законы логики, за что его зовут *“пятой ногой”* реляционной алгебры.
2. `SELECT *` — наследие печати на станке. Звёздочка означала «все колонки», чтобы не писать их руками в 132‑символьных перфокартах.
3. Команда `GO` в MS SQL Server не принадлежит стандарту SQL — это директива из старого клиента isql.
4. В Oracle долго не было `LIMIT`, а в MySQL — `RIGHT JOIN`. Поэтому админы шутили: «истинный межплатформенный SQL — это `SELECT 1;`».
5. Первый SQL‑вирус — червь *Slammer* (2003) — парализовал интернет за 10 минут через уязвимость в SQL Server 2000.
6. SQL — декларативный язык, но внутри СУБД каждый SELECT превращается в процедурный план.
7. `DROP DATABASE` придумали позже, чем `CREATE`. Сначала удалять целую БД казалось слишком опасным.
7. Почему SQL живёт дольше модных NoSQL‑наследников
- Математическая база. Таблицы + операции Кодда образуют алгебру с предсказуемой оптимизацией.
- Стандарты и переносимость. Код двадцатилетней давности можно запустить в современной Postgres или MariaDB.
- Большая экосистема. От Excel‑плагинов до BigQuery — везде так или иначе поддерживается SQL‑диалект.
- Сопротивляемость моде. Каждый «убийца SQL» (MapReduce, GraphQL, документные БД) в итоге добавляет свой адаптер SELECT ….
Итог: SQL родился как эксперимент IBM, пережил смену названий и юридические баталии, но в итоге стал «лентой Мёбиуса» мира данных: можно зайти с любой стороны — и всё равно окажешься в FROM.
@python_be1
🖥 История развития Python (1989 – 2025)
1989-12 — Гвидо ван Россум, работая в CWI (Нидерланды), начинает писать новый язык как «лучший ABC».
1991-02 — Публикация Python 0.9.0 в alt.sources; уже есть классы, исключения и базовые коллекции.
1994-01-26 — Выходит Python 1.0.0: добавлены lambda, map, filter, reduce.
1994-02 — Создана группа новостей comp.lang.python, вокруг которой формируется сообщество.
2000-10-16 — Python 2.0: list-comprehensions, сборщик циклического мусора, первая реализация Unicode.
2003-07-29 — Python 2.3: внедрён сортировщик Timsort.
2008-12-03 — Python 3.0 («Py3k»): переход на новый str`/`bytes, print() как функция, разделённый range.
2010-07-03 — Python 2.7: «долгожитель», поддержка продлена до 2020-01-01.
2015-09-13 — Python 3.5: появляется синтаксис async / await.
2018-07-12 — Гвидо объявляет о выходе с поста BDFL после споров вокруг оператора «морж» :=.
2019-10-14 — Python 3.8: тот самый оператор :=, позиционные-только аргументы / и улучшенный typing.
2020-01-01 — Официальный End-of-Life ветки 2.x.
2021-10-04 — Python 3.10: структурное сопоставление match/case.
2023-10-02 — Python 3.12: заметное ускорение интерпретатора (до +25 %), префиксные f-строки.
2024-10-07 — Python 3.13.0: экспериментальная сборка Free-Threaded CPython без GIL (PEP 703).
2025-04-08 — Python 3.13.3 (текущая стабильная версия).
2025-10 (ожидается) — Python 3.14: дальнейшая стабилизация «без-GIL»-сборки, новый `buffer`-API.
---
### Интересные факты
- Название появилось благодаря юмористическому шоу *Monty (https://vk.com/id911002) Python’s Flying Circus*; отсюда мемы «spam / eggs».
- Команда import this выводит Zen of Python — 19 однострочных принципов языка (PEP 20).
- Пасхалка import antigravity открывает комикс xkcd #353; from __future__ import braces выдаёт SyntaxError: not a chance.
- Timsort, написанный для Python 2.3, позже стал дефолтным алгоритмом сортировки в Java 7, Android, Swift и Rust.
- PEP 703 позволяет собирать CPython без GIL, открывая путь к настоящему многопоточному Python без радикального «Python 4».
- В апреле 2025 Python обновил рекорд индекса TIOBE, превысив 25 % и почти втрое обогнав C++.
- Гвидо носил титул BDFL (Benevolent Dictator For Life) почти 30 лет; c 2023 г. он возвращён как *BDFL-Emeritus*.
- PyPI (Python Package Index) превысил 500 000 пакетов, а pip install скачивается около 40 млрд раз в месяц (апрель 2025).
- import __hello__ просто печатает *Hello (https://vk.com/id630505570) world!* — напоминание, что «явное лучше неявного».
> Итог: за три с лишним десятилетия Python превратился из рождественского хобби-проекта в язык № 1, оставаясь при этом дружелюбным, читаемым и немного шутливым.
https://www.youtube.com/shorts/ZDMz1foKKlM?feature=share
@python_be1
1989-12 — Гвидо ван Россум, работая в CWI (Нидерланды), начинает писать новый язык как «лучший ABC».
1991-02 — Публикация Python 0.9.0 в alt.sources; уже есть классы, исключения и базовые коллекции.
1994-01-26 — Выходит Python 1.0.0: добавлены lambda, map, filter, reduce.
1994-02 — Создана группа новостей comp.lang.python, вокруг которой формируется сообщество.
2000-10-16 — Python 2.0: list-comprehensions, сборщик циклического мусора, первая реализация Unicode.
2003-07-29 — Python 2.3: внедрён сортировщик Timsort.
2008-12-03 — Python 3.0 («Py3k»): переход на новый str`/`bytes, print() как функция, разделённый range.
2010-07-03 — Python 2.7: «долгожитель», поддержка продлена до 2020-01-01.
2015-09-13 — Python 3.5: появляется синтаксис async / await.
2018-07-12 — Гвидо объявляет о выходе с поста BDFL после споров вокруг оператора «морж» :=.
2019-10-14 — Python 3.8: тот самый оператор :=, позиционные-только аргументы / и улучшенный typing.
2020-01-01 — Официальный End-of-Life ветки 2.x.
2021-10-04 — Python 3.10: структурное сопоставление match/case.
2023-10-02 — Python 3.12: заметное ускорение интерпретатора (до +25 %), префиксные f-строки.
2024-10-07 — Python 3.13.0: экспериментальная сборка Free-Threaded CPython без GIL (PEP 703).
2025-04-08 — Python 3.13.3 (текущая стабильная версия).
2025-10 (ожидается) — Python 3.14: дальнейшая стабилизация «без-GIL»-сборки, новый `buffer`-API.
---
### Интересные факты
- Название появилось благодаря юмористическому шоу *Monty (https://vk.com/id911002) Python’s Flying Circus*; отсюда мемы «spam / eggs».
- Команда import this выводит Zen of Python — 19 однострочных принципов языка (PEP 20).
- Пасхалка import antigravity открывает комикс xkcd #353; from __future__ import braces выдаёт SyntaxError: not a chance.
- Timsort, написанный для Python 2.3, позже стал дефолтным алгоритмом сортировки в Java 7, Android, Swift и Rust.
- PEP 703 позволяет собирать CPython без GIL, открывая путь к настоящему многопоточному Python без радикального «Python 4».
- В апреле 2025 Python обновил рекорд индекса TIOBE, превысив 25 % и почти втрое обогнав C++.
- Гвидо носил титул BDFL (Benevolent Dictator For Life) почти 30 лет; c 2023 г. он возвращён как *BDFL-Emeritus*.
- PyPI (Python Package Index) превысил 500 000 пакетов, а pip install скачивается около 40 млрд раз в месяц (апрель 2025).
- import __hello__ просто печатает *Hello (https://vk.com/id630505570) world!* — напоминание, что «явное лучше неявного».
> Итог: за три с лишним десятилетия Python превратился из рождественского хобби-проекта в язык № 1, оставаясь при этом дружелюбным, читаемым и немного шутливым.
https://www.youtube.com/shorts/ZDMz1foKKlM?feature=share
@python_be1
ВКонтакте
Сергей Коршун
Посмотрите его профиль ВКонтакте!
💡 Извлечение ключевых данных из документов
Подписи:
➡ Document Content → Содержание документа
➡ Define Context(Aspect) → Определите контекст (Аспект)
➡ Select your LLM Model → Выберите модель LLM
➡ Extract information → Извлеките информацию
@python_be1
Подписи:
➡ Document Content → Содержание документа
➡ Define Context(Aspect) → Определите контекст (Аспект)
➡ Select your LLM Model → Выберите модель LLM
➡ Extract information → Извлеките информацию
@python_be1
🐧 Задача с подвохом: Странное поведение с `df` и `du`
Условие:
Вы замечаете, что на сервере `/var/log` неожиданно «занялось» много места. Проверяете это так:
```
df -h /var
```
И видите, что диск почти полностью заполнен. Но при этом, когда проверяете размер файлов в `/var/log`:
```
du -sh /var/log
```
— оказывается, что размер логов совсем небольшой, явно не соответствующий тому, что показывает `df`.
❓ Вопрос:
Почему возникает такая ситуация? Что именно занимает место, если файлы почти пустые? Как это исправить, не перезагружая сервер?
🔍 Подсказка:
На сервере активно работают несколько приложений, которые записывают логи. Недавно был произведён `logrotate`, старые логи удалились.
---
✅ Разбор:
[спойлер: 💥Подвох:Многие думают, что после удаления файла место сразу освобождается. Но в Linux есть важный нюанс: еслипроцесс всё ещё держит файл открытым, даже после удаления файла из файловой системы,его содержимое продолжает занимать место на диске.
Вот что происходит:
-]`du`[спойлер: показываетразмер существующих файлов, поэтому он маленький (ведь файлы удалены).
-]`df`[спойлер: показываетреальное использование блочного устройства, и оновключает те данные, которые всё ещё заняты удалёнными, но открытыми файлами.
🚩 Это классическая ситуация после]`logrotate`[спойлер: : старые логи удаляются, но процессы, которые их писали (например,]`nginx`[спойлер: , `mysql`), продолжают держать дескрипторы открытыми.
🔧Как найти виновника:Используем]`lsof`[спойлер: для поиска удалённых, но ещё открытых файлов:
```bash
lsof | grep deleted
```
Вы увидите что-то вроде:
```
nginx 1234 ... /var/log/nginx/access.log (deleted)
```
🛠Как исправить без перезагрузки:1️⃣ Перезапустить приложение, которое держит файл открытым:
```bash
systemctl restart nginx
```
2️⃣ Если нельзя перезапустить, можно попробовать «сбросить» файл, подменив его на новый (подходит не всегда).
---
✅Вывод:•]`df`[спойлер: и]`du`[спойлер: показывают разное, потому что считают разными методами:
-]`df`[спойлер: : что реально занято на диске (включая удалённые, но ещё открытые файлы)
-]`du`[спойлер: : что физически доступно через файловую систему
• Если место не освобождается после удаления файла — ищите открытые файловые дескрипторы удалённых файлов. Это классика для DevOps!
💡Бонус-вопрос для гуру:Что произойдёт, если в]`lsof`[спойлер: вы видите удалённый файл, но процесс — это]`docker`[спойлер: ? Как поступить в этом случае? 😉]
@python_be1
Условие:
Вы замечаете, что на сервере `/var/log` неожиданно «занялось» много места. Проверяете это так:
```
df -h /var
```
И видите, что диск почти полностью заполнен. Но при этом, когда проверяете размер файлов в `/var/log`:
```
du -sh /var/log
```
— оказывается, что размер логов совсем небольшой, явно не соответствующий тому, что показывает `df`.
❓ Вопрос:
Почему возникает такая ситуация? Что именно занимает место, если файлы почти пустые? Как это исправить, не перезагружая сервер?
🔍 Подсказка:
На сервере активно работают несколько приложений, которые записывают логи. Недавно был произведён `logrotate`, старые логи удалились.
---
✅ Разбор:
[спойлер: 💥Подвох:Многие думают, что после удаления файла место сразу освобождается. Но в Linux есть важный нюанс: еслипроцесс всё ещё держит файл открытым, даже после удаления файла из файловой системы,его содержимое продолжает занимать место на диске.
Вот что происходит:
-]`du`[спойлер: показываетразмер существующих файлов, поэтому он маленький (ведь файлы удалены).
-]`df`[спойлер: показываетреальное использование блочного устройства, и оновключает те данные, которые всё ещё заняты удалёнными, но открытыми файлами.
🚩 Это классическая ситуация после]`logrotate`[спойлер: : старые логи удаляются, но процессы, которые их писали (например,]`nginx`[спойлер: , `mysql`), продолжают держать дескрипторы открытыми.
🔧Как найти виновника:Используем]`lsof`[спойлер: для поиска удалённых, но ещё открытых файлов:
```bash
lsof | grep deleted
```
Вы увидите что-то вроде:
```
nginx 1234 ... /var/log/nginx/access.log (deleted)
```
🛠Как исправить без перезагрузки:1️⃣ Перезапустить приложение, которое держит файл открытым:
```bash
systemctl restart nginx
```
2️⃣ Если нельзя перезапустить, можно попробовать «сбросить» файл, подменив его на новый (подходит не всегда).
---
✅Вывод:•]`df`[спойлер: и]`du`[спойлер: показывают разное, потому что считают разными методами:
-]`df`[спойлер: : что реально занято на диске (включая удалённые, но ещё открытые файлы)
-]`du`[спойлер: : что физически доступно через файловую систему
• Если место не освобождается после удаления файла — ищите открытые файловые дескрипторы удалённых файлов. Это классика для DevOps!
💡Бонус-вопрос для гуру:Что произойдёт, если в]`lsof`[спойлер: вы видите удалённый файл, но процесс — это]`docker`[спойлер: ? Как поступить в этом случае? 😉]
@python_be1
🖥 Шпаргалка по RegEx в Python
📦 Импорт:
```
import re
```
🔍 Основные функции модуля `re`
```
re.search(pattern, string) # Ищет первое совпадение (где угодно в строке)
re.match(pattern, string) # Ищет совпадение только в начале строки
re.fullmatch(pattern, string) # Проверяет, соответствует ли вся строка шаблону
re.findall(pattern, string) # Возвращает все совпадения в виде списка
re.finditer(pattern, string) # То же, но как итератор Match-объектов
re.sub(pattern, repl, string) # Замена по шаблону
re.split(pattern, string) # Разбиение строки по шаблону
```
# 🧠 Основы синтаксиса шаблонов
| Шаблон | Что значит |
|---------|-------------------------------------|
| `.` | Любой символ, кроме `\n` |
| `^` | Начало строки |
| `$` | Конец строки |
| `*` | 0 или больше повторений |
| `+` | 1 или больше |
| `?` | 0 или 1 повторение |
| `{n}` | ровно n раз |
| `{n,}` | n или больше |
| `{n,m}` | от n до m |
| `[]` | Символьный класс |
| `[^]` | Отрицание символьного класса |
| `|` | Или (`a|b`) |
| `()` | Группа (захват) |
| `\` | Экранирование спецсимвола |
💡 Примеры
```
re.search(r'\d+', 'ID=12345') # Найдёт '12345' (одно или больше цифр)
re.match(r'^\w+$', 'hello_world') # Вся строка — только буквы/цифры/_
re.findall(r'[A-Z][a-z]+', 'Mr. Smith and Dr. Brown') # ['Smith', 'Brown']
re.sub(r'\s+', '-', 'a b c') # 'a-b-c'
re.split(r'[;,\s]\s*', 'one, two;three four') # ['one', 'two', 'three', 'four']
```
🎯 Захват групп
```
text = 'Name: John, Age: 30'
match = re.search(r'Name: (\w+), Age: (\d+)', text)
if match:
print(match.group(1)) # John
print(match.group(2)) # 30
```
Группы можно называть:
```
pattern = r'(?P<name>\w+): (?P<value>\d+)'
match = re.search(pattern, 'score: 42')
match.group('name') # 'score'
match.group('value') # '42'
```
🧱 Комбинированные шаблоны
```
pattern = r'\b(?:https?://)?(www\.)?\w+\.\w+\b'
text = 'Visit https://example.com or www.test.org'
re.findall(pattern, text) # [['www.'], ['www.']]
```
⚠️ Полезные советы
• Всегда используйте `r''` перед шаблоном, чтобы не экранировать `\`
• `re.compile(pattern)` ускоряет повторное использование
• Старайтесь избегать `re.match` — чаще нужен `re.search`
✅ Быстрая проверка шаблонов
📍 Онлайн-проверка:
[regex101.com](https://regex101.com/)
[pythex.org](https://pythex.org/)
Хочешь отдельную шпаргалку по `re.sub` с лямбдами, заменами и функциями внутри, ставь лайк 👍
@python_be1
📦 Импорт:
```
import re
```
🔍 Основные функции модуля `re`
```
re.search(pattern, string) # Ищет первое совпадение (где угодно в строке)
re.match(pattern, string) # Ищет совпадение только в начале строки
re.fullmatch(pattern, string) # Проверяет, соответствует ли вся строка шаблону
re.findall(pattern, string) # Возвращает все совпадения в виде списка
re.finditer(pattern, string) # То же, но как итератор Match-объектов
re.sub(pattern, repl, string) # Замена по шаблону
re.split(pattern, string) # Разбиение строки по шаблону
```
# 🧠 Основы синтаксиса шаблонов
| Шаблон | Что значит |
|---------|-------------------------------------|
| `.` | Любой символ, кроме `\n` |
| `^` | Начало строки |
| `$` | Конец строки |
| `*` | 0 или больше повторений |
| `+` | 1 или больше |
| `?` | 0 или 1 повторение |
| `{n}` | ровно n раз |
| `{n,}` | n или больше |
| `{n,m}` | от n до m |
| `[]` | Символьный класс |
| `[^]` | Отрицание символьного класса |
| `|` | Или (`a|b`) |
| `()` | Группа (захват) |
| `\` | Экранирование спецсимвола |
💡 Примеры
```
re.search(r'\d+', 'ID=12345') # Найдёт '12345' (одно или больше цифр)
re.match(r'^\w+$', 'hello_world') # Вся строка — только буквы/цифры/_
re.findall(r'[A-Z][a-z]+', 'Mr. Smith and Dr. Brown') # ['Smith', 'Brown']
re.sub(r'\s+', '-', 'a b c') # 'a-b-c'
re.split(r'[;,\s]\s*', 'one, two;three four') # ['one', 'two', 'three', 'four']
```
🎯 Захват групп
```
text = 'Name: John, Age: 30'
match = re.search(r'Name: (\w+), Age: (\d+)', text)
if match:
print(match.group(1)) # John
print(match.group(2)) # 30
```
Группы можно называть:
```
pattern = r'(?P<name>\w+): (?P<value>\d+)'
match = re.search(pattern, 'score: 42')
match.group('name') # 'score'
match.group('value') # '42'
```
🧱 Комбинированные шаблоны
```
pattern = r'\b(?:https?://)?(www\.)?\w+\.\w+\b'
text = 'Visit https://example.com or www.test.org'
re.findall(pattern, text) # [['www.'], ['www.']]
```
⚠️ Полезные советы
• Всегда используйте `r''` перед шаблоном, чтобы не экранировать `\`
• `re.compile(pattern)` ускоряет повторное использование
• Старайтесь избегать `re.match` — чаще нужен `re.search`
✅ Быстрая проверка шаблонов
📍 Онлайн-проверка:
[regex101.com](https://regex101.com/)
[pythex.org](https://pythex.org/)
Хочешь отдельную шпаргалку по `re.sub` с лямбдами, заменами и функциями внутри, ставь лайк 👍
@python_be1
regex101
regex101: build, test, and debug regex
Regular expression tester with syntax highlighting, explanation, cheat sheet for PHP/PCRE, Python, GO, JavaScript, Java, C#/.NET, Rust.
🖥 systemd-pilot (https://github.com/mfat/systemd-pilot) — это десктопное приложение для управления сервисами systemd на GNU/Linux системах!
🌟 По сути, это графический интерфейс для команд systemctl. Он позволяет просматривать и управлять системными сервисами, быстро развертывать новые сервисы, а также запускать, останавливать и перезапускать их. Приложение легковесное и использует всего один Python-скрипт. Также предусмотрена поддержка поиска сервисов по имени.
🔐 Лицензия: GPL-3.0
🖥 Github (https://github.com/mfat/systemd-pilot)
@python_be1
🌟 По сути, это графический интерфейс для команд systemctl. Он позволяет просматривать и управлять системными сервисами, быстро развертывать новые сервисы, а также запускать, останавливать и перезапускать их. Приложение легковесное и использует всего один Python-скрипт. Также предусмотрена поддержка поиска сервисов по имени.
🔐 Лицензия: GPL-3.0
🖥 Github (https://github.com/mfat/systemd-pilot)
@python_be1
🧠 Как подготовиться к техническому собеседованию с помощью
Если ты готовишься к собеседованию в IT и не знаешь, с чего начать — обрати внимание на бесплатный курс от freeCodeCamp (https://www.freecodecamp.org/news/prepare-for-technical-interviews-using-neetcode-150/), основанный на знаменитом списке задач NeetCode 150.
⚙️ Что такое NeetCode 150?
• 🟤 Это отобранные 150 задач с LeetCode, покрывающие всё, что нужно знать:
• массивы
• строки
• хеш-таблицы
• деревья и графы
• динамическое программирование
• стек и очередь
• backtracking и двоичный поиск
🎓 Что предлагает курс freeCodeCamp:
• 38 часов подробного видеоконтента
• Каждая задача разбирается пошагово — с объяснением стратегии и кода
• Языки: Python и JavaScript
• Полностью бесплатно
📈 Почему это эффективно:
• Все задачи — реальный опыт с технических собеседований
• Структура курса позволяет идти от простого к сложному
• Удобно учиться в своем темпе
- Стартуй здесь (https://www.freecodecamp.org/news/prepare-for-technical-interviews-using-neetcode-150)
- Видео с разбором вопросов (https://www.youtube.com/watch?v=T0u5nwSA0w0)
- Решения (https://neetcode.io/practice)
Не упусти шанс систематизировать знания и уверенно пройти собеседование!
@python_be1
Если ты готовишься к собеседованию в IT и не знаешь, с чего начать — обрати внимание на бесплатный курс от freeCodeCamp (https://www.freecodecamp.org/news/prepare-for-technical-interviews-using-neetcode-150/), основанный на знаменитом списке задач NeetCode 150.
⚙️ Что такое NeetCode 150?
• 🟤 Это отобранные 150 задач с LeetCode, покрывающие всё, что нужно знать:
• массивы
• строки
• хеш-таблицы
• деревья и графы
• динамическое программирование
• стек и очередь
• backtracking и двоичный поиск
🎓 Что предлагает курс freeCodeCamp:
• 38 часов подробного видеоконтента
• Каждая задача разбирается пошагово — с объяснением стратегии и кода
• Языки: Python и JavaScript
• Полностью бесплатно
📈 Почему это эффективно:
• Все задачи — реальный опыт с технических собеседований
• Структура курса позволяет идти от простого к сложному
• Удобно учиться в своем темпе
- Стартуй здесь (https://www.freecodecamp.org/news/prepare-for-technical-interviews-using-neetcode-150)
- Видео с разбором вопросов (https://www.youtube.com/watch?v=T0u5nwSA0w0)
- Решения (https://neetcode.io/practice)
Не упусти шанс систематизировать знания и уверенно пройти собеседование!
@python_be1
🎭 Pykka — акторная модель для Python без лишних сложности. Этот проект позволяет организовывать конкурентные вычисления без традиционных проблем с состоянием и блокировками.
Вдохновлённый знаменитым Akka для JVM, Pykka предлагает минималистичный подход — никаких супервизоров или распределённых акторов, только чистые принципы обмена сообщениями между изолированными процессами.
Инструмент имеет продуманную архитектуру: разработчику достаточно определить поведение акторов, а Pykka возьмет на себя всю работу с очередями и потоками.
🤖 GitHub (https://github.com/jodal/pykka?tab=readme-ov-file)
@python_be1
Вдохновлённый знаменитым Akka для JVM, Pykka предлагает минималистичный подход — никаких супервизоров или распределённых акторов, только чистые принципы обмена сообщениями между изолированными процессами.
Инструмент имеет продуманную архитектуру: разработчику достаточно определить поведение акторов, а Pykka возьмет на себя всю работу с очередями и потоками.
🤖 GitHub (https://github.com/jodal/pykka?tab=readme-ov-file)
@python_be1
🐍 Задача уровня Pro: декоратор с внутренним состоянием
📌 Задача:
Напиши декоратор `call_limiter`, который:
- ограничивает функцию `f` максимум до `n` вызовов
- после `n` вызова функция больше не вызывается, а возвращает строку `"LIMIT REACHED"`
Пример использования:
```
(3)
def greet(name):
return f"Hello, {name}!"
print(greet("Alice")) # Hello, Alice!
print(greet("Bob")) # Hello, Bob!
print(greet("Charlie"))# Hello, Charlie!
print(greet("Dave")) # LIMIT REACHED
```
🎯 Подвохи:
- Нужно создать декоратор-фабрику с аргументом `n`
- Внутри должна быть функция с `nonlocal`, чтобы отслеживать число вызовов
- Часто путаются и используют `mutable default`, что ломает независимость между декорируемыми функциями
✅ Решение:
[спойлер: ```python
def call_limiter(n):
def decorator(func):
count = 0
def wrapper(*args, **kwargs):
nonlocal count
if count >= n:
return "LIMIT REACHED"
count += 1
return func(*args, **kwargs)
return wrapper
return decorator
```
🧪 **Проверка:**
```python][спойлер: ][спойлер: (2)
def ping():
return "pong"
print(ping()) # pong
print(ping()) # pong
print(ping()) # LIMIT REACHED][спойлер: ][спойлер: (1)
def echo(msg):
return msg
print(echo("hi")) # hi
print(echo("bye")) # LIMIT REACHED
```
🧠 **Что проверяет задача:**
• Понимание функций высшего порядка
• Работа с `nonlocal` и областью видимости
• Контроль состояния внутри декоратора
• Умение не "засорить" глобальные или общие области]
@python_be1
📌 Задача:
Напиши декоратор `call_limiter`, который:
- ограничивает функцию `f` максимум до `n` вызовов
- после `n` вызова функция больше не вызывается, а возвращает строку `"LIMIT REACHED"`
Пример использования:
```
(3)
def greet(name):
return f"Hello, {name}!"
print(greet("Alice")) # Hello, Alice!
print(greet("Bob")) # Hello, Bob!
print(greet("Charlie"))# Hello, Charlie!
print(greet("Dave")) # LIMIT REACHED
```
🎯 Подвохи:
- Нужно создать декоратор-фабрику с аргументом `n`
- Внутри должна быть функция с `nonlocal`, чтобы отслеживать число вызовов
- Часто путаются и используют `mutable default`, что ломает независимость между декорируемыми функциями
✅ Решение:
[спойлер: ```python
def call_limiter(n):
def decorator(func):
count = 0
def wrapper(*args, **kwargs):
nonlocal count
if count >= n:
return "LIMIT REACHED"
count += 1
return func(*args, **kwargs)
return wrapper
return decorator
```
🧪 **Проверка:**
```python][спойлер: ][спойлер: (2)
def ping():
return "pong"
print(ping()) # pong
print(ping()) # pong
print(ping()) # LIMIT REACHED][спойлер: ][спойлер: (1)
def echo(msg):
return msg
print(echo("hi")) # hi
print(echo("bye")) # LIMIT REACHED
```
🧠 **Что проверяет задача:**
• Понимание функций высшего порядка
• Работа с `nonlocal` и областью видимости
• Контроль состояния внутри декоратора
• Умение не "засорить" глобальные или общие области]
@python_be1
Всем привет) Помогите решить задачку, плиз. Я только недавно учиться начала (очные годовые курсы, два раза в неделю занятия), ООП прошли, но обучение, скажу так: "так себе...". Только начинаю что-то понимать, как тут же другая тема, а ещё прошлую тему не закрепили. Причем, все обучение построено на довольно-таки простых примерах, а в реальной работе, по-любому, все гораздо сложнее.
А тут друг-программист мне задачку задал (чисто чтоб проверить мои знания), а я и растерялась совсем. Не знаю как решить. И спрашивать у него не буду: прикалываться начнет. У меня от его приколов аж все желание учиться пропадает.
Так что, буду очень рада, если кто-нибудь из подписчиков группы мне поможет и объяснит эту задачку, а то я уже отчаялась совсем((
Задачку скину в личку тем, кто отзовётся. Надеюсь, что мир не без добрых людей😊
@python_be1
А тут друг-программист мне задачку задал (чисто чтоб проверить мои знания), а я и растерялась совсем. Не знаю как решить. И спрашивать у него не буду: прикалываться начнет. У меня от его приколов аж все желание учиться пропадает.
Так что, буду очень рада, если кто-нибудь из подписчиков группы мне поможет и объяснит эту задачку, а то я уже отчаялась совсем((
Задачку скину в личку тем, кто отзовётся. Надеюсь, что мир не без добрых людей😊
@python_be1
🧠 8 полезных советов по Oracle SQL
Если ты уже «умеешь в SELECT», пора прокачать SQL в Oracle до следующего уровня. Эти советы не для новичков — они для тех, кто работает с продом, сложными запросами и оптимизацией.
⚡ 1. Используй `PIVOT`/`UNPIVOT` вместо `CASE`
Поворот таблиц через PIVOT делает код чище и легче масштабируется.
SELECT * FROM (
SELECT department_id, gender, salary FROM employees
)
PIVOT (
SUM(salary) FOR gender IN ('M' AS male_salary, 'F' AS female_salary)
);
🧱 2. Вызывай функции как таблицы (`TABLE()` + PL/SQL)
Если функция возвращает коллекцию, её можно SELECT’ить напрямую:
SELECT * FROM TABLE(my_package.get_active_users(SYSDATE));
🚀 3. Генерация чисел без тормозов
CONNECT BY LEVEL — это медленно. Лучше так:
SELECT rownum FROM dual CONNECT BY rownum <= 10000;
🔍 4. Помогай оптимизатору через `CARDINALITY` hint
Oracle может ошибаться в оценке количества строк. Подскажи ему:
SELECT /*+ cardinality(e 100000) */ * FROM employees e ...
🧠 5. Используй `RESULT_CACHE` для повторяемых данных
Снизь нагрузку:
SELECT /*+ RESULT_CACHE */ * FROM country_codes;
📉 6. Никогда не делай `ORDER BY` без `FETCH FIRST` или `ROWNUM`
Не сортируй всё зря:
SELECT * FROM employees ORDER BY salary DESC FETCH FIRST 10 ROWS ONLY;
📦 7. Управляй CTE через `MATERIALIZE` и `INLINE`
Это может влиять на производительность:
WITH /*+ MATERIALIZE */ heavy_part AS (...)
SELECT * FROM heavy_part WHERE rownum = 1;
📊 8. Освой `MODEL` для расчётов как в Excel
Рядовые и прогнозные расчёты в SQL без курсоров:
SELECT * FROM sales
MODEL
PARTITION BY (region)
DIMENSION BY (month)
MEASURES (sales)
RULES (
sales[13] = sales[12] * 1.1
);
💡 Не ограничивайся SELECT — используй весь потенциал Oracle SQL.
👍 Лайк и сохраняй себе, чтобы не потерять
@python_be1
Если ты уже «умеешь в SELECT», пора прокачать SQL в Oracle до следующего уровня. Эти советы не для новичков — они для тех, кто работает с продом, сложными запросами и оптимизацией.
⚡ 1. Используй `PIVOT`/`UNPIVOT` вместо `CASE`
Поворот таблиц через PIVOT делает код чище и легче масштабируется.
SELECT * FROM (
SELECT department_id, gender, salary FROM employees
)
PIVOT (
SUM(salary) FOR gender IN ('M' AS male_salary, 'F' AS female_salary)
);
🧱 2. Вызывай функции как таблицы (`TABLE()` + PL/SQL)
Если функция возвращает коллекцию, её можно SELECT’ить напрямую:
SELECT * FROM TABLE(my_package.get_active_users(SYSDATE));
🚀 3. Генерация чисел без тормозов
CONNECT BY LEVEL — это медленно. Лучше так:
SELECT rownum FROM dual CONNECT BY rownum <= 10000;
🔍 4. Помогай оптимизатору через `CARDINALITY` hint
Oracle может ошибаться в оценке количества строк. Подскажи ему:
SELECT /*+ cardinality(e 100000) */ * FROM employees e ...
🧠 5. Используй `RESULT_CACHE` для повторяемых данных
Снизь нагрузку:
SELECT /*+ RESULT_CACHE */ * FROM country_codes;
📉 6. Никогда не делай `ORDER BY` без `FETCH FIRST` или `ROWNUM`
Не сортируй всё зря:
SELECT * FROM employees ORDER BY salary DESC FETCH FIRST 10 ROWS ONLY;
📦 7. Управляй CTE через `MATERIALIZE` и `INLINE`
Это может влиять на производительность:
WITH /*+ MATERIALIZE */ heavy_part AS (...)
SELECT * FROM heavy_part WHERE rownum = 1;
📊 8. Освой `MODEL` для расчётов как в Excel
Рядовые и прогнозные расчёты в SQL без курсоров:
SELECT * FROM sales
MODEL
PARTITION BY (region)
DIMENSION BY (month)
MEASURES (sales)
RULES (
sales[13] = sales[12] * 1.1
);
💡 Не ограничивайся SELECT — используй весь потенциал Oracle SQL.
👍 Лайк и сохраняй себе, чтобы не потерять
@python_be1
This media is not supported in your browser
VIEW IN TELEGRAM
Ночное-полезное: Oh My <s>God</s> Git — прикольная игра с открытым исходным кодом, которая с помощью карточек поможет понять логику работы GIT и научит с ним работать.
Можно залипнуть на сайте (https://ohmygit.org/) или поставить себе локально с GitHub (https://github.com/git-learning-game/oh-my-git/).
@python_be1
Можно залипнуть на сайте (https://ohmygit.org/) или поставить себе локально с GitHub (https://github.com/git-learning-game/oh-my-git/).
@python_be1