👩💻 Создание (https://www.youtube.com/watch?v=OojA7SPViEs) системы регистрации и входа с помощью Django: пошаговое руководство!
💡 Создание надежной системы аутентификации пользователей необходимо для любого веб-приложения. В этом руководстве вы создадите простую, но эффективную систему регистрации и входа с использованием фреймворка Django. К концу этой статьи у вас будет функциональная система аутентификации, в которой пользователи могут регистрироваться, входить и выходить, при этом система будет придерживаться встроенных механизмов аутентификации Django.
🕞 Продолжительность: 26:18
🔗 Ссылка: *клик* (https://www.youtube.com/watch?v=OojA7SPViEs)
@pythonl
@python_be1
💡 Создание надежной системы аутентификации пользователей необходимо для любого веб-приложения. В этом руководстве вы создадите простую, но эффективную систему регистрации и входа с использованием фреймворка Django. К концу этой статьи у вас будет функциональная система аутентификации, в которой пользователи могут регистрироваться, входить и выходить, при этом система будет придерживаться встроенных механизмов аутентификации Django.
🕞 Продолжительность: 26:18
🔗 Ссылка: *клик* (https://www.youtube.com/watch?v=OojA7SPViEs)
@pythonl
@python_be1
❤1
👩💻 pypyr (https://github.com/pypyr/pypyr) — это инструмент для автоматизации задач и выполнения пайплайнов, который сочетает команды, скрипты на разных языках программирования и приложения в единый процесс! Pypyr позволяет определять пайплайны в формате YAML, что делает его удобным для управления сложными задачами.
💡 Инструмент предоставляет интерфейс командной строки (CLI) и API для выполнения пайплайнов. Он может быть расширен за счёт плагинов, таких как поддержка AWS или Slack. Это делает pypyr подходящим для самых разных сценариев автоматизации, включая управление ресурсами, отправку уведомлений и интеграцию с внешними сервисами. Для использования достаточно установить библиотеку через pip и задать конфигурацию пайплайнов!
🔐 Лицензия: Apache-2.0
🖥 Github (https://github.com/pypyr/pypyr)
@pythonl
@python_be1
💡 Инструмент предоставляет интерфейс командной строки (CLI) и API для выполнения пайплайнов. Он может быть расширен за счёт плагинов, таких как поддержка AWS или Slack. Это делает pypyr подходящим для самых разных сценариев автоматизации, включая управление ресурсами, отправку уведомлений и интеграцию с внешними сервисами. Для использования достаточно установить библиотеку через pip и задать конфигурацию пайплайнов!
🔐 Лицензия: Apache-2.0
🖥 Github (https://github.com/pypyr/pypyr)
@pythonl
@python_be1
❤1
This media is not supported in your browser
VIEW IN TELEGRAM
🔍 Полезный инструмент, который преобразовывает ваши jpg фото в высококачественные svg изображения!
🔗 Ссылка: *клик* (https://www.vecticon.co/tools/image-vectorizer)
@data_analysis_ml
@python_be1
🔗 Ссылка: *клик* (https://www.vecticon.co/tools/image-vectorizer)
@data_analysis_ml
@python_be1
❤1
🔥 Yoooo Tencent только что выпустила новую модель генерации видео с открытым исходным кодом, и она выглядит довольно интересно!
Модель (img2videos) может генерировать видео лучше, чем Gen 3 и Luma, создавать анимированные говорящие аватары, генерировать динамические сцены.
📽️ Project http://aivideo.hunyuan.tencent.com
🧑💻 Github: http://git.new/hyvideo
📃 Paper: http://thursdai.news/hypaper
🏋️ Weights on HF: http://thursdai.news/hyv-weights https://pic.x.com/qIib0wdkzy
🤗 Hf: https://huggingface.co/tencent/HunyuanVideo-PromptRewrite
@python_be1
Модель (img2videos) может генерировать видео лучше, чем Gen 3 и Luma, создавать анимированные говорящие аватары, генерировать динамические сцены.
📽️ Project http://aivideo.hunyuan.tencent.com
🧑💻 Github: http://git.new/hyvideo
📃 Paper: http://thursdai.news/hypaper
🏋️ Weights on HF: http://thursdai.news/hyv-weights https://pic.x.com/qIib0wdkzy
🤗 Hf: https://huggingface.co/tencent/HunyuanVideo-PromptRewrite
@python_be1
👍1
🖥 Python-hdwallet
Это библиотека на Python, предназначенная для создания и работы с иерархическими детерминированными кошельками (HD Wallet), поддерживающими свыше 200 различных криптовалют.
HD Wallets – это аббревиатура от Hierarchical Deterministic Wallets (иерархический детерминированный кошелек). Являясь кошельком криптовалют нового поколения он способен генерировать любое количества ключей на основе главного открытого ключа.
Библиотека предоставляет возможность генерации миллионов адресов и управления ключами, а также включает функции для безопасного создания сид-фраз и удобного взаимодействия с блокчейнами.
pip install hdwallet
🖥 GitHub (https://github.com/talonlab/python-hdwallet)
@pythonl
@python_be1
Это библиотека на Python, предназначенная для создания и работы с иерархическими детерминированными кошельками (HD Wallet), поддерживающими свыше 200 различных криптовалют.
HD Wallets – это аббревиатура от Hierarchical Deterministic Wallets (иерархический детерминированный кошелек). Являясь кошельком криптовалют нового поколения он способен генерировать любое количества ключей на основе главного открытого ключа.
Библиотека предоставляет возможность генерации миллионов адресов и управления ключами, а также включает функции для безопасного создания сид-фраз и удобного взаимодействия с блокчейнами.
pip install hdwallet
🖥 GitHub (https://github.com/talonlab/python-hdwallet)
@pythonl
@python_be1
👍1
Pygments — Python-библиотека для подсветки синтаксиса. Простой в использовании инструмент идеален для добавления форматирования кода в веб-приложениях, документации или текстовых редакторах, имеет множество готовых стилей под любой вкус и цвет.
Прекрасный выбор при разработки приложений, где требуется визуальное выделение кода с подсветкой синтаксических элементов.
https://github.com/pygments/pygments
@python_be1
https://github.com/pygments/pygments
Прекрасный выбор при разработки приложений, где требуется визуальное выделение кода с подсветкой синтаксических элементов.
https://github.com/pygments/pygments
@python_be1
https://github.com/pygments/pygments
GitHub
GitHub - pygments/pygments: Pygments is a generic syntax highlighter written in Python
Pygments is a generic syntax highlighter written in Python - pygments/pygments
👍1
🔥 bcrypt (https://github.com/pyca/bcrypt) — это библиотека для Python, которая предоставляет функции для хэширования паролей с использованием алгоритма bcrypt!
💡 Этот алгоритм широко используется для безопасного хранения паролей благодаря своим особенностям: он поддерживает защиту от атак по словарю и делает невозможным обратное вычисление исходного пароля.
🔐 Лицензия: Apache-2.0
🖥 Github (https://github.com/pyca/bcrypt)
@pythonl
@python_be1
💡 Этот алгоритм широко используется для безопасного хранения паролей благодаря своим особенностям: он поддерживает защиту от атак по словарю и делает невозможным обратное вычисление исходного пароля.
🔐 Лицензия: Apache-2.0
🖥 Github (https://github.com/pyca/bcrypt)
@pythonl
@python_be1
👍1
🎁 Розыгрыш карьерных призов от МегаФона!
Получите возможность выиграть курсы по Excel, Python, визуализации в Tableau и финансовому моделированию в группе «Работа в МегаФоне». С ними вы прокачаете аналитические способности и получите востребованные навыки работы с данными для вашего профессионального роста!
Подписывайтесь на группу МегаФона и ставьте лайк этому посту — трех победителей выберут уже 13 декабря: https://vk.cc/cFEXIb
@python_be1
https://vk.com/wall-226724652_545
Получите возможность выиграть курсы по Excel, Python, визуализации в Tableau и финансовому моделированию в группе «Работа в МегаФоне». С ними вы прокачаете аналитические способности и получите востребованные навыки работы с данными для вашего профессионального роста!
Подписывайтесь на группу МегаФона и ставьте лайк этому посту — трех победителей выберут уже 13 декабря: https://vk.cc/cFEXIb
@python_be1
https://vk.com/wall-226724652_545
👍1
🌤 Революционный инструмент в области прогнозирования погоды от Google!
Команда Google DeepMind презентовала GenCast – новую модель искусственного интеллекта, способную с высокой точностью предсказывать погоду на целых 15 дней вперёд! 🎯
GenCast – ансамблевая диффузионная модель для прогнозирования погоды и рисков экстремальных погодных условий, обеспечивающая более быстрые и точные прогнозы на срок до 15 дней. GenCast была обученная на 40-летнем архиве исторических метеорологических данных ERA5 от ECMWF.
Модель, работающая на Google Cloud TPU v5, превосходит лидирующую систему прогнозирования ECMWF ENS по точности прогнозов на 97,2% в 1320 различных комбинациях тестируемых параметров. GenCast демонстрирует способность прогнозировать экстремальные погодные явления: периоды сильной жары и холода, сильные ветры и траектории тропических циклонов. Google DeepMind планирует выпустить код, веса и прогнозы модели в открытый доступ, чтобы поддержать метеорологическое сообщество.
Почему это так важно?
- В условиях изменения климата погода становится всё менее предсказуемой.
- Точные прогнозы помогают спасти жизни и сохранить имущество.
- Это способствует эффективному планированию использования возобновляемых источников энергии.
Что может GenCast?
- Генерирует более 50 различных сценариев развития погоды и объединяет их в единый вероятностный прогноз.
- Обеспечивает разрешение до 0.25° для всего земного шара.
- Превышает точность лучших существующих систем прогнозирования в 97.2% случаев!
Как быстро он работает?
- Всего за 8 минут создаёт 15-дневный прогноз при помощи Google Cloud TPU v5. Для традиционных систем это занимает часы работы на суперкомпьютерах!
Особенно точен в прогнозах экстремальной погоды:
- Тайфунов и ураганов
- Аномально высоких и низких температур
- Сильнейших ветров
Открытый доступ:
Google DeepMind предоставляет исходный код модели и её весовые коэффициенты всем желающим, чтобы способствовать развитию метеорологии.
▪ Статья: https://deepmind.google/discover/blog/gencast-predict..
▪ Github: https://github.com/google-deepmind/graphcast
@python_be1
https://deepmind.google/discover/blog/gencast-predict
Команда Google DeepMind презентовала GenCast – новую модель искусственного интеллекта, способную с высокой точностью предсказывать погоду на целых 15 дней вперёд! 🎯
GenCast – ансамблевая диффузионная модель для прогнозирования погоды и рисков экстремальных погодных условий, обеспечивающая более быстрые и точные прогнозы на срок до 15 дней. GenCast была обученная на 40-летнем архиве исторических метеорологических данных ERA5 от ECMWF.
Модель, работающая на Google Cloud TPU v5, превосходит лидирующую систему прогнозирования ECMWF ENS по точности прогнозов на 97,2% в 1320 различных комбинациях тестируемых параметров. GenCast демонстрирует способность прогнозировать экстремальные погодные явления: периоды сильной жары и холода, сильные ветры и траектории тропических циклонов. Google DeepMind планирует выпустить код, веса и прогнозы модели в открытый доступ, чтобы поддержать метеорологическое сообщество.
Почему это так важно?
- В условиях изменения климата погода становится всё менее предсказуемой.
- Точные прогнозы помогают спасти жизни и сохранить имущество.
- Это способствует эффективному планированию использования возобновляемых источников энергии.
Что может GenCast?
- Генерирует более 50 различных сценариев развития погоды и объединяет их в единый вероятностный прогноз.
- Обеспечивает разрешение до 0.25° для всего земного шара.
- Превышает точность лучших существующих систем прогнозирования в 97.2% случаев!
Как быстро он работает?
- Всего за 8 минут создаёт 15-дневный прогноз при помощи Google Cloud TPU v5. Для традиционных систем это занимает часы работы на суперкомпьютерах!
Особенно точен в прогнозах экстремальной погоды:
- Тайфунов и ураганов
- Аномально высоких и низких температур
- Сильнейших ветров
Открытый доступ:
Google DeepMind предоставляет исходный код модели и её весовые коэффициенты всем желающим, чтобы способствовать развитию метеорологии.
▪ Статья: https://deepmind.google/discover/blog/gencast-predict..
▪ Github: https://github.com/google-deepmind/graphcast
@python_be1
https://deepmind.google/discover/blog/gencast-predict
GitHub
GitHub - google-deepmind/graphcast
Contribute to google-deepmind/graphcast development by creating an account on GitHub.
👍1
👩💻 inflect (https://github.com/jaraco/inflect) — Python-библиотека для работы с инфлексиями слов — преобразованиями форм слов в зависимости от их грамматической роли в предложении!
🌟 Библиотека позволяет конвертировать числа в текстовые строки (например, 42 -> "forty-two"), а также предоставляет функции для работы с формами существительных и глаголов.
🔐 Лицензия: MIT
🖥 Github (https://github.com/jaraco/inflect)
@pythonl
@python_be1
🌟 Библиотека позволяет конвертировать числа в текстовые строки (например, 42 -> "forty-two"), а также предоставляет функции для работы с формами существительных и глаголов.
🔐 Лицензия: MIT
🖥 Github (https://github.com/jaraco/inflect)
@pythonl
@python_be1
👍1
🌟 PydanticAI: фреймворк для создания AI-агентов на основе Pydantic.
PydanticAI (https://github.com/pydantic/pydantic-ai) - фреймворк для Python, созданный командой разработчиков Pydantic, который упрощает создание приложений с использованием LLM. Фреймворк имеет простой и интуитивно понятный интерфейс для взаимодействия с LLMs, поддерживающими Async OpenAI (Ollama) и openAI API (ChatGPT, Gemini и Groq), с поддержкой Anthropic в ближайшем будущем.
Основная особенность PydanticAI - система внедрения зависимостей, которая передает данные, соединения и логику в целевую модель. Она упрощает тестирование и оценку агентов и позволяет динамически формировать системные промпты и определять инструменты, доступные LLM.
PydanticAI имеет возможность потоковой обработки ответов с валидацией структурированных данных, позволяя контролировать корректность соответствие данных ожидаемому ответу, тем самым повышая эффективность и интерактивность приложений.
Для отладки и мониторинга работы агентов предусмотрена интеграция с Pydantic Logfire (https://pydantic.dev/logfire), с которым можно отслеживать запросы к базам данных, анализировать поведение модели и оценивать производительность.
▶️ В документации к проекту (https://ai.pydantic.dev/) доступны примеры применения PydanticAI в сценариях:
🟢Построение Pydantic-модели на основе текстового ввода (https://ai.pydantic.dev/examples/pydantic-model/);
🟢Погодный агент (https://ai.pydantic.dev/examples/weather-agent/);
🟢Агент поддержки клиентов банка (https://ai.pydantic.dev/examples/bank-support/);
🟢Генерация SQL-запросов на основе пользовательского ввода (https://ai.pydantic.dev/examples/sql-gen/);
🟢RAG-поиск по массиву markdown-документам (https://ai.pydantic.dev/examples/rag/);
🟢Вывод результатов работы агента в терминале (https://ai.pydantic.dev/examples/stream-markdown/);
🟢Пример проверки потокового структурированного ответа на примере информации о видах китов; (https://ai.pydantic.dev/examples/stream-whales/)
🟢Простой чат-приложение (https://ai.pydantic.dev/examples/chat-app/).
⚠️ PydanticAI находится на ранней стадии бета-тестирования.
▶️Установка и простой пример "Hello Word" с Gemini-1.5-flash:
<pre language="python"># Install via PyPI
pip install pydantic-ai
# Set Gemini API key
export GEMINI_API_KEY=your-api-key
# Run example
from pydantic_ai import Agent
agent = Agent(
'gemini-1.5-flash',
system_prompt='Be concise, reply with one sentence.',
)
result = agent.run_sync('Where does "hello world" come from?')
print(result.data)
"""
The first known use of "hello, world" was in a 1974 textbook about the C programming language.
"""</pre>
📌Лицензирование: MIT License.
🟡Документация (https://ai.pydantic.dev/)
🟡Demo (https://huggingface.co/spaces/freddyaboulton/pydantic-ai)
🖥GitHub (https://github.com/pydantic/pydantic-ai)
@ai_machinelearning_big_data
#AI #ML #LLM #Agents #Framework #PydanticAI
@python_be1
PydanticAI (https://github.com/pydantic/pydantic-ai) - фреймворк для Python, созданный командой разработчиков Pydantic, который упрощает создание приложений с использованием LLM. Фреймворк имеет простой и интуитивно понятный интерфейс для взаимодействия с LLMs, поддерживающими Async OpenAI (Ollama) и openAI API (ChatGPT, Gemini и Groq), с поддержкой Anthropic в ближайшем будущем.
Основная особенность PydanticAI - система внедрения зависимостей, которая передает данные, соединения и логику в целевую модель. Она упрощает тестирование и оценку агентов и позволяет динамически формировать системные промпты и определять инструменты, доступные LLM.
PydanticAI имеет возможность потоковой обработки ответов с валидацией структурированных данных, позволяя контролировать корректность соответствие данных ожидаемому ответу, тем самым повышая эффективность и интерактивность приложений.
Для отладки и мониторинга работы агентов предусмотрена интеграция с Pydantic Logfire (https://pydantic.dev/logfire), с которым можно отслеживать запросы к базам данных, анализировать поведение модели и оценивать производительность.
▶️ В документации к проекту (https://ai.pydantic.dev/) доступны примеры применения PydanticAI в сценариях:
🟢Построение Pydantic-модели на основе текстового ввода (https://ai.pydantic.dev/examples/pydantic-model/);
🟢Погодный агент (https://ai.pydantic.dev/examples/weather-agent/);
🟢Агент поддержки клиентов банка (https://ai.pydantic.dev/examples/bank-support/);
🟢Генерация SQL-запросов на основе пользовательского ввода (https://ai.pydantic.dev/examples/sql-gen/);
🟢RAG-поиск по массиву markdown-документам (https://ai.pydantic.dev/examples/rag/);
🟢Вывод результатов работы агента в терминале (https://ai.pydantic.dev/examples/stream-markdown/);
🟢Пример проверки потокового структурированного ответа на примере информации о видах китов; (https://ai.pydantic.dev/examples/stream-whales/)
🟢Простой чат-приложение (https://ai.pydantic.dev/examples/chat-app/).
⚠️ PydanticAI находится на ранней стадии бета-тестирования.
▶️Установка и простой пример "Hello Word" с Gemini-1.5-flash:
<pre language="python"># Install via PyPI
pip install pydantic-ai
# Set Gemini API key
export GEMINI_API_KEY=your-api-key
# Run example
from pydantic_ai import Agent
agent = Agent(
'gemini-1.5-flash',
system_prompt='Be concise, reply with one sentence.',
)
result = agent.run_sync('Where does "hello world" come from?')
print(result.data)
"""
The first known use of "hello, world" was in a 1974 textbook about the C programming language.
"""</pre>
📌Лицензирование: MIT License.
🟡Документация (https://ai.pydantic.dev/)
🟡Demo (https://huggingface.co/spaces/freddyaboulton/pydantic-ai)
🖥GitHub (https://github.com/pydantic/pydantic-ai)
@ai_machinelearning_big_data
#AI #ML #LLM #Agents #Framework #PydanticAI
@python_be1
GitHub
GitHub - pydantic/pydantic-ai: GenAI Agent Framework, the Pydantic way
GenAI Agent Framework, the Pydantic way. Contribute to pydantic/pydantic-ai development by creating an account on GitHub.
👍1