📺 Хватит коллекционировать туториалы!
Десятки роликов по ML, сотни вкладок, папка «Посмотреть позже» трещит по швам. В голове — обрывки знаний о нейросетях и Pandas.
Знания без системы — это просто «шум». Они не превращаются в навыки и проекты.
Наш курс «ML для старта в Data Science» — это не ещё один туториал. Это система. Чёткий путь от «каши» в голове до первого сильного проекта в портфолио.
И да, чтобы старт был ещё проще — при покупке курса по ML вы получаетекурс по Python в подарок
👉 Превратите «шум» в навык
А вы сталкивались с «информационной кашей»? Как выбирались? 👇
Десятки роликов по ML, сотни вкладок, папка «Посмотреть позже» трещит по швам. В голове — обрывки знаний о нейросетях и Pandas.
Знания без системы — это просто «шум». Они не превращаются в навыки и проекты.
Наш курс «ML для старта в Data Science» — это не ещё один туториал. Это система. Чёткий путь от «каши» в голове до первого сильного проекта в портфолио.
И да, чтобы старт был ещё проще — при покупке курса по ML вы получаете
👉 Превратите «шум» в навык
А вы сталкивались с «информационной кашей»? Как выбирались? 👇
👍1
Какой будет вывод следующего фрагмента кода?
👾 — {1, 2, 3, 3, 2, 4, 5, 5}
👍 — {1, 2, 3, 4, 5}
🥰 — None
⚡️ — {1, 5}
Библиотека задач по Python
s = {1, 2, 3, 3, 2, 4, 5, 5}
print(s)
👾 — {1, 2, 3, 3, 2, 4, 5, 5}
👍 — {1, 2, 3, 4, 5}
🥰 — None
Библиотека задач по Python
Please open Telegram to view this post
VIEW IN TELEGRAM
👍50👾1
🚀 Главная ошибка новичка в ML — строить звездолёт вместо велосипеда
Многие сразу хотят свою Midjourney, но в итоге получают только выгорание.
Успех начинается с «велосипеда»: научитесь предсказывать цены или классифицировать отзывы. Освойте базу, а уже потом стройте «звездолёты».
Наш курс «ML для старта в Data Science» — это и есть тот самый правильный старт от простого к сложному.
👉 Начните правильно
Берёте курс «ML для старта» до конца недели — Python в подарок.
❗А 21 августа пройдет бесплатный вебинар с Марией Жаровой: узнаете, какие проекты качают скилл, а какие качают ваши нервы.
А какой самый сложный проект вы брались делать в самом начале? 🫢
Многие сразу хотят свою Midjourney, но в итоге получают только выгорание.
Успех начинается с «велосипеда»: научитесь предсказывать цены или классифицировать отзывы. Освойте базу, а уже потом стройте «звездолёты».
Наш курс «ML для старта в Data Science» — это и есть тот самый правильный старт от простого к сложному.
👉 Начните правильно
Берёте курс «ML для старта» до конца недели — Python в подарок.
❗А 21 августа пройдет бесплатный вебинар с Марией Жаровой: узнаете, какие проекты качают скилл, а какие качают ваши нервы.
А какой самый сложный проект вы брались делать в самом начале? 🫢
👍1
✍🏻 Что такое фабрика декораторов?
Фабрика декораторов — это особая разновидность функции высшего порядка, которая возвращает декоратор вместо прямого результата. Главное отличие фабрики декораторов от обычного декоратора в том, что она принимает аргументы, которые могут конфигурировать логику декоратора.
Например, фабрика может принимать имя лог-файла, в который будет производиться запись при вызове декорируемой функции. Или уровень логирования вместо простой записи всех вызовов.
Такой подход позволяет создавать переиспользуемые и гибко настраиваемые декораторы для решения разных задач.
Главные преимущества фабрик декораторов — это возможность абстрагироваться от конкретики реализации, избежать дублирования кода и создавать интуитивный API для декораторов с настройками.
Библиотека задач по Python
Например, фабрика может принимать имя лог-файла, в который будет производиться запись при вызове декорируемой функции. Или уровень логирования вместо простой записи всех вызовов.
Такой подход позволяет создавать переиспользуемые и гибко настраиваемые декораторы для решения разных задач.
Главные преимущества фабрик декораторов — это возможность абстрагироваться от конкретики реализации, избежать дублирования кода и создавать интуитивный API для декораторов с настройками.
Библиотека задач по Python
👍1
🧠 Выбор первого ML-проекта: чеклист против выгорания
Классика плохих решений в ML — выбрать слишком сложный проект: неделя ковыряния в коде, десятки крашей и никакого результата. Хотите дойти до финиша — начните с простого проекта, который реально можно довести до конца.
Мини-чеклист первого проекта:
1. Понятные данные — без «я нашёл датасет в даркнете, но он на суахили».
2. Измеримая метрика — «точность 92%», а не «ну вроде работает».
3. Объяснимый результат — чтобы не-техлид понял, почему модель ругается на спам.
Наш курс «ML для старта в Data Science» — старт от простого к сложному: теория → практика → проверка → проект в портфолио.
👉 Начать свой путь в Data Science
Оплатите курс по ML до 17 августа — курс по Python в подарок.
📅 Бесплатный вебинар с Марией Жаровой — 21 августа: как выбирать проекты, которые доводят до оффера, а не до психотерапевта.
💾 Сохрани, чтобы не потерять, когда будешь готов(а) начать
Классика плохих решений в ML — выбрать слишком сложный проект: неделя ковыряния в коде, десятки крашей и никакого результата. Хотите дойти до финиша — начните с простого проекта, который реально можно довести до конца.
Мини-чеклист первого проекта:
1. Понятные данные — без «я нашёл датасет в даркнете, но он на суахили».
2. Измеримая метрика — «точность 92%», а не «ну вроде работает».
3. Объяснимый результат — чтобы не-техлид понял, почему модель ругается на спам.
Наш курс «ML для старта в Data Science» — старт от простого к сложному: теория → практика → проверка → проект в портфолио.
👉 Начать свой путь в Data Science
Оплатите курс по ML до 17 августа — курс по Python в подарок.
📅 Бесплатный вебинар с Марией Жаровой — 21 августа: как выбирать проекты, которые доводят до оффера, а не до психотерапевта.
💾 Сохрани, чтобы не потерять, когда будешь готов(а) начать
👍1
😎 Вы просили — мы сделали. Самый долгожданный анонс этого лета!
Мы открываем набор на второй поток курса «AI-агенты для DS-специалистов»!
На курсе мы учим главному навыку 2025 года: не просто «болтать» с LLM, а строить из них рабочие системы с помощью Ollama, RAG, LangChain и crew.ai.
📆 Старт потока — 15 сентября.
💸 Цена 49 000 ₽ действует только в эти выходные — до 17 августа. С понедельника будет дороже.
👉 Занять место
Мы открываем набор на второй поток курса «AI-агенты для DS-специалистов»!
На курсе мы учим главному навыку 2025 года: не просто «болтать» с LLM, а строить из них рабочие системы с помощью Ollama, RAG, LangChain и crew.ai.
📆 Старт потока — 15 сентября.
💸 Цена 49 000 ₽ действует только в эти выходные — до 17 августа. С понедельника будет дороже.
👉 Занять место
👍1