🫣 Боитесь математики в ML?
Думаете, для этого нужно вспоминать университетские интегралы и решать сложные уравнения?
У нас хорошая новость: машинное обучение — это в первую очередь инженерная практика, а не математическая олимпиада. Здесь важнее понимать суть, а не выводить формулы.
Именно на таком подходе — через логику, интуицию и наглядные примеры — и построен наш курс «ML для старта в Data Science», где мы объясняем всё на пальцах, без боли и зубрёжки.
Регистрируйтесь, пока есть свободные места 😉
Думаете, для этого нужно вспоминать университетские интегралы и решать сложные уравнения?
У нас хорошая новость: машинное обучение — это в первую очередь инженерная практика, а не математическая олимпиада. Здесь важнее понимать суть, а не выводить формулы.
Именно на таком подходе — через логику, интуицию и наглядные примеры — и построен наш курс «ML для старта в Data Science», где мы объясняем всё на пальцах, без боли и зубрёжки.
Регистрируйтесь, пока есть свободные места 😉
👍1
Какова главная причина использования полиморфизма?
👾 — Это позволяет программисту мыслить на более абстрактном уровне
👍 — Придется писать меньше программного кода
🥰 — Программа будет иметь более элегантный дизайн и ее будет легче поддерживать и обновлять
⚡️ — Программный код занимает меньше места
Библиотека задач по Python
👾 — Это позволяет программисту мыслить на более абстрактном уровне
👍 — Придется писать меньше программного кода
🥰 — Программа будет иметь более элегантный дизайн и ее будет легче поддерживать и обновлять
Библиотека задач по Python
Please open Telegram to view this post
VIEW IN TELEGRAM
👾11🥰8👍1
🧐 Зоопарк моделей в ML: с чего начать?
Открываешь статью по машинному обучению — и в тебя летят слова: трансформеры, бустинги, SVM, регрессии.
Кажется, придётся учить всё это, иначе в ML не пустят.
Хорошая новость: 90% задач можно закрыть 2–3 классическими методами. Разберёшь их — уже сможешь собирать работающие проекты. А хайповые названия подождут.
Важно: не распыляйся на всё подряд. Начни с базового — это фундамент, на котором держится остальное.
👉 Успей попасть на курс «ML для старта в Data Science»
Открываешь статью по машинному обучению — и в тебя летят слова: трансформеры, бустинги, SVM, регрессии.
Кажется, придётся учить всё это, иначе в ML не пустят.
Хорошая новость: 90% задач можно закрыть 2–3 классическими методами. Разберёшь их — уже сможешь собирать работающие проекты. А хайповые названия подождут.
Важно: не распыляйся на всё подряд. Начни с базового — это фундамент, на котором держится остальное.
👉 Успей попасть на курс «ML для старта в Data Science»
👍1
Какое утверждение верно для работы с замыканиями и областями видимости в Python при использовании nonlocal и global?
👾 — nonlocal и global изменяют значение переменной только в момент объявления функции, а не при выполнении
👍 — nonlocal ищет переменную в ближайшей внешней области видимости, не включая глобальную, и изменяет её по ссылке
🥰 — global и nonlocal идентичны в поведении, но nonlocal можно использовать только внутри вложенных функций
⚡️ — Если переменная помечена как nonlocal, Python создаёт новую переменную в замыкании, не затрагивая внешнюю
Библиотека задач по Python
👾 — nonlocal и global изменяют значение переменной только в момент объявления функции, а не при выполнении
👍 — nonlocal ищет переменную в ближайшей внешней области видимости, не включая глобальную, и изменяет её по ссылке
🥰 — global и nonlocal идентичны в поведении, но nonlocal можно использовать только внутри вложенных функций
Библиотека задач по Python
Please open Telegram to view this post
VIEW IN TELEGRAM
👍11