Вы обрабатываете большие массивы числовых данных в Python, и профилирование показывает, что большинство времени тратится на циклы for со встроенными типами. Какой подход наиболее правильный для оптимизации?
👾 — Разбить массивы на списки поменьше и обрабатывать их по частям
👍 — Использовать специализированные библиотеки (например, NumPy), которые выполняют векторные операции вне GIL
🥰 — Переписать цикл на вложенные list comprehension
⚡️ — Принудительно запускать gc.collect() после каждой итерации
Библиотека задач по Python
👾 — Разбить массивы на списки поменьше и обрабатывать их по частям
👍 — Использовать специализированные библиотеки (например, NumPy), которые выполняют векторные операции вне GIL
🥰 — Переписать цикл на вложенные list comprehension
⚡️ — Принудительно запускать gc.collect() после каждой итерации
Библиотека задач по Python
👍24👾1
😎 Сколько баллов набрали вы?
Голосуйте, какой у вас уровень разработчика:
😁 — 5-12 баллов (стажер)
👍 — 13-25 баллов (джуниор)
⚡️ — 26-40 баллов (джуниор+)
👏 — 41-60 баллов (миддл)
🔥 — 61-80 баллов (миддл+)
🎉 — 81-100 баллов (сеньор)
🤩 — 100+ баллов (тимлид)
Но вот в чем прикол — опытный разработчик набирает баллы не случайными косяками, а осознанными решениями.
👉 Научим, как быстро прокачаться от стажера до сеньора
Голосуйте, какой у вас уровень разработчика:
😁 — 5-12 баллов (стажер)
👍 — 13-25 баллов (джуниор)
⚡️ — 26-40 баллов (джуниор+)
👏 — 41-60 баллов (миддл)
🔥 — 61-80 баллов (миддл+)
🎉 — 81-100 баллов (сеньор)
🤩 — 100+ баллов (тимлид)
Но вот в чем прикол — опытный разработчик набирает баллы не случайными косяками, а осознанными решениями.
👉 Научим, как быстро прокачаться от стажера до сеньора
😁4👍1🙏1
Ваш Python-сервис обрабатывает большое количество сетевых запросов. При профилировании видно, что он простаивает, ожидая I/O. Какой подход наиболее правильный для повышения производительности?
👾 — Увеличить количество потоков в ThreadPoolExecutor
👍 — Перейти на asyncio/uvloop и использовать асинхронные драйверы для работы с I/O
🥰 — Запускать каждый запрос в отдельном процессе через multiprocessing
⚡️ — Чаще вызывать gc.collect() для освобождения памяти
Библиотека задач по Python
👾 — Увеличить количество потоков в ThreadPoolExecutor
👍 — Перейти на asyncio/uvloop и использовать асинхронные драйверы для работы с I/O
🥰 — Запускать каждый запрос в отдельном процессе через multiprocessing
⚡️ — Чаще вызывать gc.collect() для освобождения памяти
Библиотека задач по Python
👍14
🎮 КВЕСТОВАЯ ЛИНИЯ: «Путь Data Scientist'а»
⮕ Твой стартовый набор искателя данных:
⚡️ АКТИВЕН ВРЕМЕННЫЙ БАФФ: «Щедрость наставника»
Эффект: –30% к цене полного набора ДСника
Было: 121.800 ₽ → Стало: 84.900 ₽
☞ Что ждет тебя в этом квесте
📎 Забрать бафф
Рассрочки: 3 мес | 6 мес | 12 мес
⮕ Твой стартовый набор искателя данных:
Python — твое легендарное оружие (урон по багам +∞)
Математика — твой базовый интеллект (влияет на понимание алгоритмов)
Машинное обучение — твое дерево навыков (открывает новые способности)
⚡️ АКТИВЕН ВРЕМЕННЫЙ БАФФ: «Щедрость наставника»
Эффект: –30% к цене полного набора ДСника
Было: 121.800 ₽ → Стало: 84.900 ₽
☞ Что ждет тебя в этом квесте
— Получение артефактов: портфолио проектов и сертификаты— Прокачка от новичка до Senior Data Scientist— Босс-файты с реальными задачами из индустрии— Доступ к гильдии единомышленников
📎 Забрать бафф
Рассрочки: 3 мес | 6 мес | 12 мес
👍3
⚡️ Будь как этот гений с картинки — предлагай свои условия работодателю, а не наоборот!
Кто нужен?
Но если вы пока джун — я бы предложил:
- Full-time контракт: 180к/мес после курса + опцион на карьеру в топ-компаниях
- Либо фикс за проект: стань ML-инженером за 39к вместо 44к с промокодом LASTCALL
🔗 Старт 9 сентября
Кто нужен?
Senior ML-Engineer с опытом работы более 6 месяцев в FAANG компаниях. Требование: разработать кросс-платформенное приложение-трекер зарплат с AI-распознаванием вакансий по резюме.
Но если вы пока джун — я бы предложил:
- Full-time контракт: 180к/мес после курса + опцион на карьеру в топ-компаниях
- Либо фикс за проект: стань ML-инженером за 39к вместо 44к с промокодом LASTCALL
🔗 Старт 9 сентября
👍2
В Python-сервисе нужно обрабатывать большое количество CPU-bound задач (например, шифрование или обработку изображений). Вы используете ThreadPoolExecutor, но прироста производительности почти нет. Какой подход будет правильным?
👾 — Увеличить количество потоков в пуле до числа ядер × 10
👍 — Использовать ProcessPoolExecutor или multiprocessing, чтобы обойти GIL
🥰 — Переписать задачи на asyncio, чтобы они выполнялись конкурентно
⚡️ — Вставить вызовы gc.collect() внутри цикла, чтобы ускорить потоки
Библиотека задач по Python
👾 — Увеличить количество потоков в пуле до числа ядер × 10
👍 — Использовать ProcessPoolExecutor или multiprocessing, чтобы обойти GIL
🥰 — Переписать задачи на asyncio, чтобы они выполнялись конкурентно
⚡️ — Вставить вызовы gc.collect() внутри цикла, чтобы ускорить потоки
Библиотека задач по Python
👍17❤2
Иногда реально ощущение, что нас держат в Матрице.
Большинство сидит, читает статьи про ML, смотрит ролики «как это работает» — и всё.
❗ Сегодня последний день промокода Lastcall (−5000 ₽).
Уже завтра стартует первый вебинар по Машинному обучению — полный набор для выхода из Матрицы.
Кто готов вырваться из симуляции и ворваться в сезон найма?
👾 — я уже в команде Нео
👍 — хочу красную таблетку
🤔 — пока думаю, но интересно
👉 Забронируй место сейчас
Большинство сидит, читает статьи про ML, смотрит ролики «как это работает» — и всё.
❗ Сегодня последний день промокода Lastcall (−5000 ₽).
Уже завтра стартует первый вебинар по Машинному обучению — полный набор для выхода из Матрицы.
Кто готов вырваться из симуляции и ворваться в сезон найма?
👾 — я уже в команде Нео
👍 — хочу красную таблетку
🤔 — пока думаю, но интересно
👉 Забронируй место сейчас
Как используется конструкция try — except? Какие ещё блоки для обработки исключений существуют?
try: Этот блок используется, чтобы обернуть код, который может вызвать исключение.
except: В этом блоке пишется код, который будет выполнен, если в блоке try возникнет исключение. Можно указать несколько блоков except.
else: Этот блок выполняется, если в блоке try не возникло исключений, то есть всё сработало без ошибок.
finally: Данный блок выполняется всегда после try, except и else, независимо от того, появилось исключение или нет (например, содержит инструкцию по закрытию файла).
Библиотека задач по Python
Библиотека задач по Python
👍8
В Python при сравнении объектов с оператором is и == есть разница. Что наиболее корректно?
👾 — is сравнивает значения объектов, а == — их идентичность в памяти
👍 — is проверяет идентичность (один и тот же объект в памяти), == — равенство значений
🥰 — Оба оператора работают одинаково, разницы нет
⚡️ — is всегда быстрее и потому используется вместо ==
Библиотека задач по Python
👾 — is сравнивает значения объектов, а == — их идентичность в памяти
👍 — is проверяет идентичность (один и тот же объект в памяти), == — равенство значений
🥰 — Оба оператора работают одинаково, разницы нет
⚡️ — is всегда быстрее и потому используется вместо ==
Библиотека задач по Python
👍43👾2
В Python что произойдёт при использовании изменяемого объекта (например, списка) как значения по умолчанию в аргументах функции?
👾 — Ошибка компиляции, так делать нельзя
👍 — Один и тот же объект будет использоваться для всех вызовов функции
🥰 — Каждый вызов функции будет создавать новый список автоматически
⚡️ — Значение по умолчанию всегда копируется при вызове функции
Библиотека задач по Python
👾 — Ошибка компиляции, так делать нельзя
👍 — Один и тот же объект будет использоваться для всех вызовов функции
🥰 — Каждый вызов функции будет создавать новый список автоматически
⚡️ — Значение по умолчанию всегда копируется при вызове функции
Библиотека задач по Python
👍24