Что делать если нужно сериализовать данные, которые не поддерживаются стандартным модулем json?
Если нужно сериализовать объекты, которые по умолчанию не поддерживаются модулем json, то есть несколько вариантов:
— Реализовать методы __getattr__ и __setattr__ в классе объекта, чтобы преобразовать его в словарь, который уже можно сериализовать в JSON.
— Использовать декоратор dataclass из модуля dataclasses для автоматической генерации методов сериализации.
— Создать собственный класс-наследник json.JSONEncoder и переопределить метод default(), чтобы указать как сериализовать нестандартные объекты.
— Использовать библиотеку marshmallow для создания схем сериализации/десериализации сложных объектов в JSON.
— Преобразовать объекты в dict или list вручную перед сериализацией с помощью методов объекта или отражения (reflection).
— Использовать другой формат сериализации, например YAML или MessagePack, который может поддерживать произвольные типы.
Библиотека собеса по Python
— Реализовать методы __getattr__ и __setattr__ в классе объекта, чтобы преобразовать его в словарь, который уже можно сериализовать в JSON.
— Использовать декоратор dataclass из модуля dataclasses для автоматической генерации методов сериализации.
— Создать собственный класс-наследник json.JSONEncoder и переопределить метод default(), чтобы указать как сериализовать нестандартные объекты.
— Использовать библиотеку marshmallow для создания схем сериализации/десериализации сложных объектов в JSON.
— Преобразовать объекты в dict или list вручную перед сериализацией с помощью методов объекта или отражения (reflection).
— Использовать другой формат сериализации, например YAML или MessagePack, который может поддерживать произвольные типы.
Библиотека собеса по Python
👍4❤1
К чему может быть применен декоратор?
Декораторы можно применять к:
— Обычным функциям, определенным с помощью def.
— Методам классов.
— Статическим методам и методам класса внутри классов.
— Lambda функциям.
— Методам встроенных типов в Python (например, к методам списков, словарей).
Кстати, у нас есть курс по алгоритмам и структурам данных по скидке 40%: https://proglib.academy/algorithms_and_data_structures
Библиотека собеса по Python
— Обычным функциям, определенным с помощью def.
— Методам классов.
— Статическим методам и методам класса внутри классов.
— Lambda функциям.
— Методам встроенных типов в Python (например, к методам списков, словарей).
Библиотека собеса по Python
👍3
Каким будет результат следующего выражения: -31 % 10?
Результатом выражения -31 % 10 будет 9. Это происходит потому, что для отрицательных чисел оператор % возвращает остаток от деления первого числа на второе немного другим образом. -31 % 10 = -3 — 1/10 и в ответ мы получим 10 — 1 = 9.
Библиотека собеса по Python
Библиотека собеса по Python
👍3👏1
🔎 Собес сам себя не пройдет
Ты готов к собеседованию? А если проверю?
Залетай к нам и забирай курсы со скидкой 40%. Только до конца октября можно узнать много нового и отточить навыки.
🎯 Забирай курсы:
🐍 python для разработчиков;
🧮 алгоритмы и структуры данных;
📝 архитектуры и шаблоны проектирования;
🧩 основы IT для новичков.
⚡️ Не упусти скидку и получи долгожданный оффер!
Ты готов к собеседованию? А если проверю?
Залетай к нам и забирай курсы со скидкой 40%. Только до конца октября можно узнать много нового и отточить навыки.
🎯 Забирай курсы:
🐍 python для разработчиков;
🧮 алгоритмы и структуры данных;
📝 архитектуры и шаблоны проектирования;
🧩 основы IT для новичков.
⚡️ Не упусти скидку и получи долгожданный оффер!
👍1
В чём разница между is и == в Python, и когда использовать is?
is проверяет тождество (это один и тот же объект), == — равенство значений (через __eq__). Используйте is только для None, булевых (True/False) и собственных «сентинелов». Для чисел/строк/списков — ==; на совпадение is из-за интернирования полагаться нельзя.
Библиотека собеса по Python
Библиотека собеса по Python
👍6
Как обеспечить строгую согласованность кэша при записи в Django/DRF под высокой нагрузкой?
Короткий ответ: Делайте запись в БД в транзакции, фиксируйте событие в outbox и только после коммита инвалидируйте/перестраивайте кэш (write-through), используя версионирование ключей. Защищайтесь от stampede через короткие TTL + jitter и распределённые локи в Redis. Для чтения с реплик учитывайте лаг и маршрутизируйте горячие чтения на мастер или используйте read-your-writes токены/версии.
Библиотека собеса по Python
Библиотека собеса по Python
🎲 Знаешь, что хуже всего на собесе?
Когда задают простой вопрос, а ты не можешь ответить.
🤔 Это ощущение, когда понимаешь:
От «я знаю...» до «сейчас объясню!» всего один курс.
✅ Алгоритмы и структуры данных — от Big O до задач криптографии.
✅ Python для разработчиков — пиши чистый и эффективный код.
✅ Архитектуры и шаблоны — строй системы, которые масштабируются.
✅ Основы IT — всё необходимое для входа в профессию.
Выбирай любой и забирай со скидкой 40% только до конца октября.
🔗 Выбрать курс
Когда задают простой вопрос, а ты не можешь ответить.
🤔 Это ощущение, когда понимаешь:
«Блин, я это знаю... вроде... сейчас...»
От «я знаю...» до «сейчас объясню!» всего один курс.
✅ Алгоритмы и структуры данных — от Big O до задач криптографии.
✅ Python для разработчиков — пиши чистый и эффективный код.
✅ Архитектуры и шаблоны — строй системы, которые масштабируются.
✅ Основы IT — всё необходимое для входа в профессию.
Выбирай любой и забирай со скидкой 40% только до конца октября.
🔗 Выбрать курс
У вас есть Python-сервис, который обрабатывает асинхронные запросы через asyncio. При нагрузочном тесте задержки начинают расти, хотя CPU и память почти не используются. В чём может быть причина и как её решать?
Скорее всего, внутри event loop есть блокирующие операции (синхронные вызовы к БД, файлам или тяжёлые вычисления). Их нужно вынести в отдельный процесс или поток (ProcessPoolExecutor/ThreadPoolExecutor) либо заменить на асинхронные аналоги библиотек.
Библиотека собеса по Python
Библиотека собеса по Python
👍1