Несколько месяцев назад у меня промелькнула мысль: текущая волна эмиграции породит большое количество стартап-фаундеров. За этой мыслью лежит простая логика:
1️⃣ Основное препятствие, которое останавливает людей от создания стартапа — это страх перемен. И часто это не конкретные страхи, а абстрактные и неизвестные вещи. Стартап с самого начала ставит основателя в ситуацию неопределённости. В обычной жизни мало механизмов, которые могли бы подготовить к такому вызову.
2️⃣ Научно доказанный лучший способ борьбы со страхами — это терапия погружением (exposure therapy). Простыми словами это можно описать как «закрыть глаза и шагнуть туда, где страшно». Вот почему каждый следующий стартап начинать становится все проще — неопределенность прошлого уровня становится обыденостью. Так что, лучшая подготовка к стартапу — это запуск самого стартапа.
3️⃣ Если перейти на уровень психологии, то такие механизмы и навыки можно описать как «адаптивность» и «толерантность к страху». Адаптивность — это о том, как быстро и эффективно я меняюсь, когда меняется окружающая среда. Толерантность к страху отражает базовый уровень страшного, который человек способен перенести. Применительно к стартапам, с каждым новым проектом планка возрастает, и человек готов вынести больше, а за счет адаптивности это происходит быстрее.
4️⃣ Так вот, эмиграция — это та самая ситуация, когда ты попадаешь в совершенно новые условия, которые ранее казались страшными. Аренда жилья, подготовка документов, взаимодействие с незнакомыми людьми, которые не говорят даже на английском. Это все повышает тот базовый уровень, который ты готов вынести. И снова — каждая следующая эммиграция идет проще предыдущей за счет того, что базовая планка страха поднимается.
5️⃣ После опыта эмиграции стартап уже не покажется насколько страшным. Это просто ещё одна неопределённость, с которой я могу справиться. Ведь если я сумел адаптироваться в новой стране, преодолеть языковой барьер, культурные различия, то запуск стартапа — это просто следующий челлендж, который я в состоянии принять. Эта волна эмиграции приведет к тому, что миллионы людей повысят свою планку, окажутся ближе к запуска стартапа.
6️⃣ Нередко люди после опыта эммиграции возвращаются обратно. Точно так же нередко люди после опыта стартапа возвращаются в найм. Здесь нет универсального верного пути. Но мне кажется крутым сам факт того, что больше людей окажутся дальше по воронке процесса запуска стартапа, и мы неминуемо увидим сотни новых успешных стартапов.
📹 На этот пост меня натолкнуло выстулпение Balaji Srinivasan в YC Startup School 2013. Он там выводит концепцию Exit, которая покрывает и «увольнение из компании, чтобы основать стартап» и «эмиграцию из страны» и раскарывает почему это мощный драйвер изменений и инноваций.
@prod1337
Please open Telegram to view this post
VIEW IN TELEGRAM
YouTube
Balaji Srinivasan at Startup School 2013
Balaji Srinivasan at Startup School 2013. Startup School is YC's free online program for founders. Sign up to access the full curriculum and over $100k in deals! https://www.startupschool.org/
❤21👍11🤔1
В предыдущих постах я уже рассказал, как я эффективно читаю научные пейперы и книги через GPT. Теперь пришло время рассказать, как я подхожу к видео на ютубе.
Подход простой: сначала прочитать краткое содержание с основными мыслями из видео → затем уже решать стоит ли посмотреть его целиком. Я давно уже пытался внедрить такой процесс в ручном режиме. Для популярных видео или курсов я искал сначала саммари с основными мыслями, но такое находилось редко.
🤖 У меня наконец получилось автоматизировать этот процесс (почти) для любого видео при помощи расширения от команды Glasp. Работает так: у каждого видео на ютубе есть автоматическая транскрипция в текст. Расширение берет этот текст, открывает окно с ChatGPT, вставляет туда и просит саммаризировать до основных мыслей. В отличии от предыдущего сервиса — понадобится активный аккаунт OpenAI. Также если есть платный аккаунт, то GPT-4 дает результаты в несколько раз лучше.
👨🔬 Выше я написал, что это работает почти для любого видео. Тут вступает в силу вопрос длины контекста. Напомню: в текстовое поле ChatGPT помещается около 4k коротких английских слов или 1k на русском. В пересчете на минуты английского видео — это в районе 10 полных минут разговора. Ребята из Glasp это предусмотрели и написали код, который равномерно берет куски текста из всего транскрипта так, чтобы они гарантировано поместились.
✅ Классные результаты получаются на английских видео длиной до 30 минут. В коментарии к посту закину результат саммаризации видоса от Balaji из вчерашнего поста. Никто не запрещает запустить расширение и на часовом видео, но там большая вероятность потерять важные мысли из видоса. На русском языке не рекомендую запускать — даже на очень коротких видео получал посредственные результаты.
😎 Pro tips: 1) расширение удобнее всего запускать по хоткею
Cmd+X+X; 2) Расширение также работает для страниц в интернете, статей, документации — запускается тоже по хоткею.@prod1337
Please open Telegram to view this post
VIEW IN TELEGRAM
👍13❤4🌭3🦄3
🕺 Задаем вопрос сразу ко всем видео на любимом ютуб-канале
Вы думали я закончил, но меня не остановить. Мы обсудили уже как пообщаться с автором научной статьи, книгой и конкретным видео на ютубе. Теперь покажу как задать вопрос ко всем видео, которые есть на каком-нибудь ютуб-канале.
🚀Для это будем использовать сервис Context. Они дают чат-оболочку над 30+ популярными ютуб-каналами и подкастами. Так можно задать вопрос Эндрю Хуберману, Тиму Фэррису или спикерам YC Startup School. С одной стороны мы получаем обычный текстовый ответ, с другой ссылки на конкретные участки в видео на этом канале, где есть похожая информация (по сути поисковик).
🤔 Но не все так гладко: чуваки пивотнулись из B2C в B2B, не добавляют новые каналы и планируют со временем закрыть даже поиск по этим. Вместо этого они теперь предлагают любому создать своего персонального бота на базе любого ютуб-канала. Там сразу же прайсинг от $20/mo даже за небольшой ютуб-канал — не лучшая опция если это не использовать это как-то для бизнеса.
😌 В тоже время внутри используется достаточно простая технология векторных эмбедингов. Я рассказывал про нее в посте про замену разработчиков при помощи AI. На Гитхабе уже есть открытые чаты с контентом от Лекса Фридмана и Тима Урбана. И я уверен, что на его место обязательно появится другой пользовательский продукт — уж слишком удобно так искать по видео-контенту в мире, где каждую неделю выходят десятки подкастов по 3 часа длиной.
А пока, если есть вопросы по стартапам, здоровью, финансам — задаем их ботам на Context.
@prod1337
Вы думали я закончил, но меня не остановить. Мы обсудили уже как пообщаться с автором научной статьи, книгой и конкретным видео на ютубе. Теперь покажу как задать вопрос ко всем видео, которые есть на каком-нибудь ютуб-канале.
🚀Для это будем использовать сервис Context. Они дают чат-оболочку над 30+ популярными ютуб-каналами и подкастами. Так можно задать вопрос Эндрю Хуберману, Тиму Фэррису или спикерам YC Startup School. С одной стороны мы получаем обычный текстовый ответ, с другой ссылки на конкретные участки в видео на этом канале, где есть похожая информация (по сути поисковик).
🤔 Но не все так гладко: чуваки пивотнулись из B2C в B2B, не добавляют новые каналы и планируют со временем закрыть даже поиск по этим. Вместо этого они теперь предлагают любому создать своего персонального бота на базе любого ютуб-канала. Там сразу же прайсинг от $20/mo даже за небольшой ютуб-канал — не лучшая опция если это не использовать это как-то для бизнеса.
😌 В тоже время внутри используется достаточно простая технология векторных эмбедингов. Я рассказывал про нее в посте про замену разработчиков при помощи AI. На Гитхабе уже есть открытые чаты с контентом от Лекса Фридмана и Тима Урбана. И я уверен, что на его место обязательно появится другой пользовательский продукт — уж слишком удобно так искать по видео-контенту в мире, где каждую неделю выходят десятки подкастов по 3 часа длиной.
А пока, если есть вопросы по стартапам, здоровью, финансам — задаем их ботам на Context.
@prod1337
👍3🦄3❤2🌭1
🌎 Новые возможности ChatGPT после релиза доступа к интернету
Несколько дней назад я получил доступ к GPT-4 с browsing mode (пока выдают только по подписке Plus). Работает точно также как стандартный режим, но в определенные моменты теперь может делать поисковые запросы, открывать сайты и читать их контент.
😵 Первые впечатления — ждал большего. Для большей части сайтов запросы отваливаются, у браузера не получается прочитать их контент. При этом сам по себе браузинг работает медленно, а из-за сломанных запросов процесс растягивается на ~5 минут. И не похоже, что у этой проблемы есть простое решение. Сервисы вроде Cloudflare фильтруют автоматический бот-трафик. И сложно предсказать, какая политика будет для парсера от OpenAI. Также ничто не мешает владельцам сайта самим написать «защитный фильтр» для своего контента.
👨🔬 Но там где работает — работает круто. Раньше приходилось в голове проводить проверку «а эта информация новее 2021 или нет?». И если нет, то придумывать способ передать информацию в промт в ручном режиме. В этом сильно помогало расширение про которое я рассказывал на днях. В любом случае с браузингом открываются совсем новые возможности взаимодействия, расскажу про свои любимые:
1️⃣ Документация и код — раньше регулярно ловил баги при генерации кода, потому что библиотека уже сильно обновилась, а GPT была обучена на сторой версии. Теперь в таком случае можно дать ссылку на страницу свежей доки и попросить использовать информацию оттуда — сработает отлично.
2️⃣ Работа с актуальным контентом сайта — можно в промпте просто дать ссылку на сайт и быть увереным, что получишь ответ из актуального контента на сайте. Браузер даже умеет самостоятельно ходить по остальным страницам сайта, когда это помогает решить задачу. Сценарий: cкармливаем ссылку на сайт компании при подготовке к собесу или продаже — получаем основную информацию в сжатом виде. Pro tip: если модель ответила не запрашивая данные из интернета, то можно просто попросить ее фактчекнуть свой ответ — тогда она запустит режим-браузинг.
3️⃣ Структурирование и парсинг — просим собрать все ссылки с определенной веб-страницы и отправить их в табличном виде. Или ссылки на внешние сайты партнеров, когда собираем информацию о компании. С таким browsing-mode хорошо справляется. Можно зайти и с обратной стороны — попросить собрать эссе с цитированием сайтов и подкрепить ссылками.
🫢 Также попросил ChatGPT саму собрать табличку новых фичей после релиза доступа к интернету. Неплохо справилась — ответ приложу в комменты.
@prod1337
Несколько дней назад я получил доступ к GPT-4 с browsing mode (пока выдают только по подписке Plus). Работает точно также как стандартный режим, но в определенные моменты теперь может делать поисковые запросы, открывать сайты и читать их контент.
😵 Первые впечатления — ждал большего. Для большей части сайтов запросы отваливаются, у браузера не получается прочитать их контент. При этом сам по себе браузинг работает медленно, а из-за сломанных запросов процесс растягивается на ~5 минут. И не похоже, что у этой проблемы есть простое решение. Сервисы вроде Cloudflare фильтруют автоматический бот-трафик. И сложно предсказать, какая политика будет для парсера от OpenAI. Также ничто не мешает владельцам сайта самим написать «защитный фильтр» для своего контента.
👨🔬 Но там где работает — работает круто. Раньше приходилось в голове проводить проверку «а эта информация новее 2021 или нет?». И если нет, то придумывать способ передать информацию в промт в ручном режиме. В этом сильно помогало расширение про которое я рассказывал на днях. В любом случае с браузингом открываются совсем новые возможности взаимодействия, расскажу про свои любимые:
1️⃣ Документация и код — раньше регулярно ловил баги при генерации кода, потому что библиотека уже сильно обновилась, а GPT была обучена на сторой версии. Теперь в таком случае можно дать ссылку на страницу свежей доки и попросить использовать информацию оттуда — сработает отлично.
2️⃣ Работа с актуальным контентом сайта — можно в промпте просто дать ссылку на сайт и быть увереным, что получишь ответ из актуального контента на сайте. Браузер даже умеет самостоятельно ходить по остальным страницам сайта, когда это помогает решить задачу. Сценарий: cкармливаем ссылку на сайт компании при подготовке к собесу или продаже — получаем основную информацию в сжатом виде. Pro tip: если модель ответила не запрашивая данные из интернета, то можно просто попросить ее фактчекнуть свой ответ — тогда она запустит режим-браузинг.
3️⃣ Структурирование и парсинг — просим собрать все ссылки с определенной веб-страницы и отправить их в табличном виде. Или ссылки на внешние сайты партнеров, когда собираем информацию о компании. С таким browsing-mode хорошо справляется. Можно зайти и с обратной стороны — попросить собрать эссе с цитированием сайтов и подкрепить ссылками.
🫢 Также попросил ChatGPT саму собрать табличку новых фичей после релиза доступа к интернету. Неплохо справилась — ответ приложу в комменты.
@prod1337
👍5🦄3❤2🌭2😎2
🧘♂️ Будущее mental health — за языковыми моделями
Последние месяцы наблюдаю, как крутые предприниматели собирают себе AI-коучей на базе ChatGPT. Дима Мацкевич поделился своим промптом для превращения чата в гранулярного коуча для исследования эмоций. А вот тут Майк Ян поделился своим промтом для T-GROW CEO-коучинга.
🧑💻 Я попробовал оба промта на своих запросах: ответы получаются дейсвительно классные. Но в отличие от классических сессий с психологом/коучем здесь сложнее добиться глубокого результат. Легко перейти в соседнюю вкладку и отвлечься; также есть проблемы с эмпатией — не хватает визуального образа за текстом. Порог входа не назвать низким — нужно заранее четко понимать зачем тебе оно нужно. Проблемы можно пробовать решить через виртуальные аватары, распознавание и синтез речи. Все технологии для такого уже доступны, так что интересно будет попробовать демку.
📲 Затем я наткнулся питчдек стартапа YUNG: они строят B2B сервис для поддержки ментального здоровья сотрудников. Там заявлены ежедневные задания, чеклисты для проверки состояния, но основной сценарий лежит именно через чат с языковой моделью. Что я вижу в питчдеке? Они не пытаются заменить человеческие сессии. Наоборот, они выступают за дешевизну, массовость и скейлинг сразу на всю компанию. Все то что не возможно, либо дорого сделать с участием живого человека.
🤔 В обоих случаях я вижу потенциальные проблемы с доверием: c одной стороны: хочу ли я довериться и поделиться личным с моделью от компани OpenAI? С другой стороны, вопрос еще сложнее: большую часть ментальных проблем генерирует сама работа. Хочу ли я поделиться этими проблемами с продуктом, который мне предоставляет сама компания, где я работаю?
🫣 В любом случае хочется верить в демократизацию сферы mental health, и что новые миллионы людей активируются и получать помощь, благодаря новым продуктам. Тем более эта помощь вероятно понадобится, чтобы справляться с последствиями от внедрения AI в нашу жизнь.
@prod1337
Последние месяцы наблюдаю, как крутые предприниматели собирают себе AI-коучей на базе ChatGPT. Дима Мацкевич поделился своим промптом для превращения чата в гранулярного коуча для исследования эмоций. А вот тут Майк Ян поделился своим промтом для T-GROW CEO-коучинга.
🧑💻 Я попробовал оба промта на своих запросах: ответы получаются дейсвительно классные. Но в отличие от классических сессий с психологом/коучем здесь сложнее добиться глубокого результат. Легко перейти в соседнюю вкладку и отвлечься; также есть проблемы с эмпатией — не хватает визуального образа за текстом. Порог входа не назвать низким — нужно заранее четко понимать зачем тебе оно нужно. Проблемы можно пробовать решить через виртуальные аватары, распознавание и синтез речи. Все технологии для такого уже доступны, так что интересно будет попробовать демку.
📲 Затем я наткнулся питчдек стартапа YUNG: они строят B2B сервис для поддержки ментального здоровья сотрудников. Там заявлены ежедневные задания, чеклисты для проверки состояния, но основной сценарий лежит именно через чат с языковой моделью. Что я вижу в питчдеке? Они не пытаются заменить человеческие сессии. Наоборот, они выступают за дешевизну, массовость и скейлинг сразу на всю компанию. Все то что не возможно, либо дорого сделать с участием живого человека.
🤔 В обоих случаях я вижу потенциальные проблемы с доверием: c одной стороны: хочу ли я довериться и поделиться личным с моделью от компани OpenAI? С другой стороны, вопрос еще сложнее: большую часть ментальных проблем генерирует сама работа. Хочу ли я поделиться этими проблемами с продуктом, который мне предоставляет сама компания, где я работаю?
🫣 В любом случае хочется верить в демократизацию сферы mental health, и что новые миллионы людей активируются и получать помощь, благодаря новым продуктам. Тем более эта помощь вероятно понадобится, чтобы справляться с последствиями от внедрения AI в нашу жизнь.
@prod1337
❤11👍11🦄4😎2🌭1
Год назад люди начали массово использовать промпты для генерации картинок. Тогда же заговорили, что промпт-инжиниринг — это навык будушего, который нужно будет всем освоить. Затем появились критики такого подхода. Они выступают за то, что у чистых промптов слишком сложный UX и нам нужно строить над ними интерфейсы. Я думаю, что правда есть и там, и там.
⚙️ Для примера я возьму промпт в формате JSON для создания персонального учителя. Мне он нравится тем, что он раздвигает границы обычного использования языковой модели. Такой промпт показывает, каких результатов можно достичь, если подробно и четко сформулировать свой запрос. JSON здесь используется не просто так — это структурированный формат для компьютеров. У него есть свои правила и именно поэтому ChatGPT его считывает лучше, чем обычный человеческий язык.
🎨 В то же время большинству пользователей намного привычнее было бы выбрать эти значения в интерфейсе и просто запустить чат. Да, языковые модели уже достаточно умные, чтобы можно было использовать последующие сообщения в чате для настройки. Но таким паттернам обучиться сложно, это точно не подойдет для дальнейшего распространения языковых моделей.
🧪 Еще важно учесть, что разработать и переделать любой интерфейс занимает время. А вот чистые промпты позволяют моментально тестировать гипотезы и менять поведение. Поэтому если мы находимся на стадии экспериментов, то покрывать промпты интерфейсом — не лучшая идея. В этом контексте, я предлагаю рассматривать промпты, как язык программирования над языковой моделью. Как и в классической разработке — часто самый быстрый способ проверить техническую гипотезу — это голый функциональный код. И только после таких проверок этот код покрывается интерфейсом.
🔮 Поэтому я считаю, что чистые промпты действительно останутся с нами надолго и работа промпт-инженеров будет востребованной. Но нам понадобятся и классные интерфейсы, чтобы снижать когнитивную нагрузку и привлекать новых пользователей в такие продукты.
@prod1337
Please open Telegram to view this post
VIEW IN TELEGRAM
👍10❤4🌭2🦄2😎2🤔1
Продакт-менеджеры знают, как сложно пересадить пользователя с привычного решения на новое. Считается, что для этого нужно сделать 10х продукт по сравнению со старым. Тем не менее, я стал использовать гугл-поиск на 90% меньше с декабря прошлого года. Оказалось, что формулировать вопросы в свободном формате и получать ответы текстом намного удобнее, чем исследовать поисковую выдачу.
🕸 В первом релизе ChatGPT классно закрыл сценарии работы с информацией, для которой не нужна актуальность и достаточно свежести конца 2021 года. А с появлением плагинов и веб-браузинга чат начал закрывать и сценарии, где требуется свежая информация. Неудивительно, что внутри Гугла все последние месяцы бьют тревогу — уже перестроили стратегию, структуру компании и развивают свой Bard.
🌐 Как я уже писал, веб-браузинг в ChatGPT плохо, но к счастью есть решение. В этом нам поможет продукт Perplexity. Это полноценный поиск с встроенным GPT-4 и классным дизайном. На днях они релизнули режим Copilot: теперь можно задать даже абстрактный вопрос вроде «какие есть интересные события в июне в Белграде» или «собери мне план курса по Langchain». Копайлот задаст в ответ уточняющие вопросы и в итоге распишет ответ с ссылками на актуальные сайты-источники. После этого можно продолжить общение в чате и уточнить свой запрос.
🤖 Обычный поиск там работает без регистрации, а для режима копайлота нужно будет авторизоваться через гугл. Также удобно, что результат можно зашарить с другими — вот к примеру результаты моего запроса про курс по Лангчейну. Рекомендую начать пробовать для сценариев, в которых вы бы хотели использовать ChatGPT, но требуется актуальная информация.
🔮 Всё это натолкнуло меня на мысли про будущее контент-маркетинга и SEO. Давайте соберем здесь 30 реакций и я сделаю про это отдельный пост.
@prod1337
Please open Telegram to view this post
VIEW IN TELEGRAM
👍24🌭5🦄5😎5❤4
Я нахожусь в информационном пузыре из предпринимателей и разработчиков. Мне может казаться, что все вокруг ежедневно используют ChatGPT, тестируют новые идеи и даже пишут код для этого. Но как все обстоит на самом деле? Для этого обратимся к классическому графику adoption curve.
🤔 Группа инноваторов — это пользователи из англоязычного твиттера. Для него характерны ежедневные запуски новых продуктов, опен-сорс демок, а твиттер-треды про новинки собирают сотни тысячи просмотров. Главная метрика — быть первым, кто попробует что-то новое и рассказать другим.
🌅 Следом идут ранние последователи — это разработчики, маркетологи, продакты с навыком экспериментировать и желанием достигнуть большей эффективности для себя или бизнеса. Метрика здесь — найти полезное решение, и также поделиться им с другими. Для них ценность этого решения превысила transaction cost в какой-то момент.
✅ Правда в том, что это все еще ранний рынок, и языковые модели не проникнут дальше в таком же виде. Я уже писал, что промпты создают слишком высокую когнитивную нагрузку для пользователей — это увеличивает порог входа. Я уверен, что для перехода дальше нам нужно строить интерфейсы. И уже сейчас существует огромное пространство для нишевых продуктов, которые будут давать удобный интерфейс над языковой моделью.
🫧 Вот тут как раз и опасно нахождение в пузыре. Приходится балансировать между «все вокруг меня используют промпты и сложно дать интерфейс лучше из-за его универсальности» И «80% людей не используют промпты и не будут никогда использовать → как я могу дать ценность от использования языковой модели?». Оба эти утверждения правилные.
@prod1337
Please open Telegram to view this post
VIEW IN TELEGRAM
👍10😎4❤3🤷♂2🦄1
Опрос к последнему посту: кто ты из пользователей ChatGPT?
Anonymous Poll
35%
Использую постоянно + экспериментирую 🤩
8%
Использую постоянно по одним и тем же задачам 🫡
40%
Иногда использую 👌
8%
Пользовался, но не понял зачем мне это 😐
8%
Не пробовал, но интересно 🤔
2%
Не пробовал, не интересно 👎
❤1
Написал гостевой пост в канал Трендоскопа, с вами тоже поделюсь
Представляю уже себе картину будущего, где оплачиваешь доступ к источнику уникальных данных, и с каждым источником твоя личная языковая моделька становится умнее.
Или выходишь на работу — и весь Ноушен и Конфлюенс становится доступен для модели, сразу получаешь персональный онбординг и задаешь вопросы🤩
Представляю уже себе картину будущего, где оплачиваешь доступ к источнику уникальных данных, и с каждым источником твоя личная языковая моделька становится умнее.
Или выходишь на работу — и весь Ноушен и Конфлюенс становится доступен для модели, сразу получаешь персональный онбординг и задаешь вопросы
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3😎3❤2
Forwarded from Трендоскоп Lab (Александр)
Защита контента от языковых моделей
Сегодня гостевой пост от @vladkooklev на горячую тему.
На прошлой неделе browsing mode стал доступен для всех платных пользователей ChatGPT, теперь у модели есть доступ к любой актуальной информации. Также раскатился режим gpt-4 copilot в поисковике Perplexity.ai, который делает его сопоставимым по мощи с ChatGPT и тоже с доступом к реальным данным.
При этом добыча информации напоминает обычный веб-скраппинг. И если при обычном поиске создатели контента получают свои клики и рекламные показы, то тут практически никто не будет заходить на сайт.
Появляется вопрос — что вообще делать платформам, заточенным на SEO и UGC. Например Stack Overflow и Reddit уже сказали, что планируют чарджить языковые модели за доступ к своей информации на этапе обучения, а тут еще более острый кейс с постоянным скрапингом контента.
На этом рынке уже анонсировал продукт стартап Sphere. Они предлагают решение по защите контента и протокол, по которому языковые модели смогут получать данные с сайта, только если пользователь или сам поисковый сервис оплатил подписку на этот контент.
Намечается большая борьба между поисковиками нового поколения и сайтами, которые генерируют этот контент, когда начнет падать их рекламный доход.
===
Спасибо Владу за интересный тренд, рекомендую подписаться на его канал @prod1337 — там он ежедневно исследует новые технологии, изучает их влияние на жизнь и будущее.
Сегодня гостевой пост от @vladkooklev на горячую тему.
На прошлой неделе browsing mode стал доступен для всех платных пользователей ChatGPT, теперь у модели есть доступ к любой актуальной информации. Также раскатился режим gpt-4 copilot в поисковике Perplexity.ai, который делает его сопоставимым по мощи с ChatGPT и тоже с доступом к реальным данным.
При этом добыча информации напоминает обычный веб-скраппинг. И если при обычном поиске создатели контента получают свои клики и рекламные показы, то тут практически никто не будет заходить на сайт.
Появляется вопрос — что вообще делать платформам, заточенным на SEO и UGC. Например Stack Overflow и Reddit уже сказали, что планируют чарджить языковые модели за доступ к своей информации на этапе обучения, а тут еще более острый кейс с постоянным скрапингом контента.
На этом рынке уже анонсировал продукт стартап Sphere. Они предлагают решение по защите контента и протокол, по которому языковые модели смогут получать данные с сайта, только если пользователь или сам поисковый сервис оплатил подписку на этот контент.
Намечается большая борьба между поисковиками нового поколения и сайтами, которые генерируют этот контент, когда начнет падать их рекламный доход.
===
Спасибо Владу за интересный тренд, рекомендую подписаться на его канал @prod1337 — там он ежедневно исследует новые технологии, изучает их влияние на жизнь и будущее.
😎8👍6❤5
🔊 Будущее интерфейсов – за голосовым вводом
Уже неделю активно тестирую приложение ChatGPT, и оно — супер.
💼 Да, и до момента релиза приложения существовали аналоги. Николай Давыдов даже написал, что несколько из них зарабатывали миллионы долларов в месяц. Но у меня всегда были опасения насчет них, потому что неизвестно как они хранят данные. Еще один важный фактор — раньше мне казалось, что для всех моих сценариев в ChatGPT нужна структура и ввод большого количества текста.
🎤 Неожиданно вместо переноса десктопных сценариев, приложение открыло для меня новые — все это благодаря голосовому вводу. Раньше мои попытки пользоваться голосовым вводом в iOS всегда заканчивались состоянием «проще ввести руками». Но тут другое — приложение ChatGPT использует технологию Whisper, и она распознаёт мой голос с точностью 99.9%. В результате можно просто расслабиться и начать наговаривать мысли.
🚶♂️Теперь я выхожу на утреннюю прогулку, создаю новый чат и прошу просто слушать мои мысли. После прогулки возвращаюсь домой и прошу структурировать их в четкий список. Также изменился процесс написания постов — я просто последовательно выговариваю все мысли, а в конце прошу их структурировать, использую это как основу.
🔮 Со связкой разпознания речи и больших языковых моделей мы приближаемся к будущему, где мы полноценно можем управляться одним голосом. Вот тут Дима Мацкевич в посте предсказывал, что будущие поколения уже будут обходиться без клавиатур. А я несколько месяцев назад накидал эксперимент, который позволял использовать «промпты» для любого интерфейса — поставьте реакций если интересно.
😎Pro tip: Майк Ян поделился хаком, как включить озвучку ответов от ChatGPT.
@prod1337
Уже неделю активно тестирую приложение ChatGPT, и оно — супер.
💼 Да, и до момента релиза приложения существовали аналоги. Николай Давыдов даже написал, что несколько из них зарабатывали миллионы долларов в месяц. Но у меня всегда были опасения насчет них, потому что неизвестно как они хранят данные. Еще один важный фактор — раньше мне казалось, что для всех моих сценариев в ChatGPT нужна структура и ввод большого количества текста.
🎤 Неожиданно вместо переноса десктопных сценариев, приложение открыло для меня новые — все это благодаря голосовому вводу. Раньше мои попытки пользоваться голосовым вводом в iOS всегда заканчивались состоянием «проще ввести руками». Но тут другое — приложение ChatGPT использует технологию Whisper, и она распознаёт мой голос с точностью 99.9%. В результате можно просто расслабиться и начать наговаривать мысли.
🚶♂️Теперь я выхожу на утреннюю прогулку, создаю новый чат и прошу просто слушать мои мысли. После прогулки возвращаюсь домой и прошу структурировать их в четкий список. Также изменился процесс написания постов — я просто последовательно выговариваю все мысли, а в конце прошу их структурировать, использую это как основу.
🔮 Со связкой разпознания речи и больших языковых моделей мы приближаемся к будущему, где мы полноценно можем управляться одним голосом. Вот тут Дима Мацкевич в посте предсказывал, что будущие поколения уже будут обходиться без клавиатур. А я несколько месяцев назад накидал эксперимент, который позволял использовать «промпты» для любого интерфейса — поставьте реакций если интересно.
😎Pro tip: Майк Ян поделился хаком, как включить озвучку ответов от ChatGPT.
@prod1337
👍23❤5😎5🦄3👎1
Я уже писал, что промпты — это новый язык программирования. Но это только часть новой большой индустрии. При этом у нее до сих пор даже нет четкого названия. Она формируется прямо сейчас на стыке трех направлений:
1. Product Engineering: классическое проектирование продуктов - интерфейсы, логика, система.
2. Prompt Engineering: хороший промпт может дать 10х результат, больше чем другие оптимизации. Мы до сих пор далеки от понимания, как нужно писать эффективные промпты.
3. NLP (Natural Language Processing): «как прокинуть в языковую модель свои данные релевантные текущему запросу». Работа с данными, эмбединги, токенизация, чанки, оверлапы, long term memory. Интересно, что в этом направлении почти ничего не изменилось 2020-го года.
🆕 Что изменилось?
↓
1. Новые модели GPT под API: Появилась новая умная модель GPT-4, доступная через простое API, и её дешёвый вариант GPT-3.5. Можно в 40 строк кода сделать то, над чем раньше отдельная команда трудилась целый год. Это сильно сократило время на прототипы и эксперименты, мы увидели тысячи новых продуктов.
2. Запуск и хайп вокруг ChatGPT: это привлекает больше разработчиков → мы получили больше инновационных продуктов → это генерирует еще больше хайпа → цикл продолжается.
3. Новый тулинг: появился Langchain; векторные БД стали облачными → появилась возможность не погружаться в NLP часть глубоко и про этом строить продукты.
😲 Почему эта индустрия важна?
↓
1. Языковые интерфейсы: людям удобнее взаимодействовать с системами на естественном языке. Будущие интерфейсы будут ещё более ориентированы на человеческий язык и голос.
2. Ценность для бизнеса: человеческая работа во многом сводится к обработке языка и информации и генерации новой. Мы можем автоматизировать и заменять эти функции, экономя деньги бизнесу. Здесь существует огромное пространство для появления AI-агентов.
3. Мир переполнен информацией: человеческий мозг не в состоянии обработать даже текущие объемы. Потребность в персонализации информации, ее обобщении и отборе будет только расти.
4. Техологии и туллинг продолжат развиваться: если сейчас кажется, что языковая модель решает какую-то задачу плохо, то это не значит, что через полгода она не будет решана.
🚀 Эти факторы приведут к тому, что у бизнеса не останется выбора кроме как интегрировать языковые модели. Причем недостаточно будет просто подключить GPT через API и написать базовый промпт. Это приведет к запросу на экспертов в этой области.
Поэтому я решил запустить чатик-сообщество по «языковой разработке». Сейчас в приоритете набираем людей с реальными опытом запуска AI продуктов или экспериментов — напишите мне, если есть такой опыт и хотите вступить (если опыта нет, но очень хотите вступить, тоже напишите)
@prod1337
Please open Telegram to view this post
VIEW IN TELEGRAM
❤18😎6🦄5👍2
В предыдущем посте я описал то, какой я вижу разработку будущего. У нее даже нет названия и там я предложил ее называть пока «языковой». Эта область разработки продуктов строится вокруг человеческого языка и голоса.
Последние месяцы я только и делал, что искал информацию по кускам в интернете, чтобы разобраться, как это работает. В результате из этого получилось сообщество и вот теперь гайд.
Это все еще сырая версия, я планирую ее дорабатывать в течение нескольких недель. Но уже даже сейчас это самый структурированный и понятный гайд про то, как начать разрабатывать продукты над языковыми моделями. Также я до сих пор не уверен в названии области и продолжаю перебирать варианты — делитесь идеями, если будет.
Гайд полностью бесплатный, таким и останется — взамен только прошу шарить гайд другим и давать фидбэк.
🔗 → Большой гайд по языковой разработке
Please open Telegram to view this post
VIEW IN TELEGRAM
❤25👍14😎5🌭3🦄3
За последнюю неделю несколько разговоров заходили к вопросу «а для чего ты лично ведешь канал?». В результате получились 3 пункта, которыми хочу поделиться.
1. Упаковка мыслей: я могу несколько дней вынашивать классную мысль. Часто все начинается с небольшой идеи на стыке областей. Я ее начинаю продумывать, обсуждать по чатам, искать по ней информацию. В какой-то момент в голове набирается достаточно информации и остается ее упаковать в пост и отправить. После этого — она как будто освобождает моментально место для новых мыслей. Теперь к этой мысли всегда можно обратиться и прислать в виде ссылки на пост.
2. Асинхронный обмен идеями: весь мой круг общения постоянно перемешается. Круто если удается увидеться и пообщаться вживую хотя бы раз в полгода. Если человек все это время читал мой канал, то можно не пересказывать упакованные мысли, а сразу переходить к их расширению через опыт этого человека → найти какие-то новые идеи. Еще круче, когда вы оба ведете каналы и можете в разговоре обсуждать концепции на стыке мыслей из них.
3. Рычаг/leverage: я уже описывал эту концепцию в канале. Мне нравится, когда мои мысли доходят до широкой аудитории. Я бы с удовольствием рассказал те же мысли под пиво в баре, а так имею возможность их доносить до тысяч людей. Также мы живем в мире, где рекламные каналы перегружены, цены растут. Личное медиа — это продукт, который позволяет масштабируемо дистрибуцировать свои идеи и свои продукты. В отличии от рекламы здесь заложены внутри сетевые эффекты и нелинейный рост — невероятно круто, когда это нащупываешь и удается оседлать.
И вот снова пообщался, дополнил и «упаковал мысль» — могу к ней ссылаться. Люди прочитают и мы сможем ее обсудить при встрече. Тамим образом получится расширить эту мысль за счет опыта другого человека — возможно получится другой пост. За счет сетевых эффектов и рычага мысль долетит сразу до многих людей.
@prod1337
Please open Telegram to view this post
VIEW IN TELEGRAM
❤20👍11😎10
На прошлой неделе потестил новые продукты, которые отражают, куда будут двигаться персональные ИИ-ассистенты.
1. Quivr: «второй мозг, который дает ответы». Продукт работает, как облако, куда вы заливаете свои документы, заметки, аудио и видео. После этого можно задавать вопросы и получать ответы из контента ваших документов. Продукт работает над эмбедингами от OpenAI (если до сих пор не знаете, что такое эмбединги — у меня есть гайд, где это одна из тем). Продукт полнолстью опен-сорсный, при желании можно развернуть у себя и не думать про безопасность.
2. LocalAI: «строим продукты над локальными языковыми моделями». Уже несколько месяцев можно запускать языковые модели на М1/М2 чипах мака — в этом помогают проекты llama.cpp и ggml.ai. LocalAI пошли дальше и предложили обернуть эти локальные модели в Chat API от OpenAI. Получается, что весь код, который раньше работал с новыми GPT-моделями теперь легко переключается на локально поднятую модель. Но пока не стоит слишком радоваться — модели ужимаются до ресурсов М-чипов за счет значительной потери качества. Я пока не придумал сценариев, где этим можно пользоваться и при этом не страдать. Но скорость развития радует, так что наблюдаем дальше.
Получается есть два направления: «опора на данные пользователя» и «локальные языковые модели». На их стыке лежит продукт «персональный ИИ-ассистент, который работает с документами на локальном компьюетере». На пути к такому продукту большую роль будут играть именно опен-сорсные продукты. В тоже время они пока далеки от качества, которые могут дать закрытые продукты от больших компаний.
🥷 Вокруг этого и будет строиться большая битва в следующие годы. Открытость, локальность против закрытости и удобства за счет ресурсов большой компании. Про это я сделаю отдельный пост — кидайте реакции, если интересно.
@prod1337
Please open Telegram to view this post
VIEW IN TELEGRAM
👍32❤9😎5🤔1
Я еще несколько месяцев назад я написал, что хайп вокруг автономных AI-агентов преувеличен. А на днях зашел в сабреддит
/r/AutoGPT и один из самых залайканных тредов за последний месяц с такой же мыслью — «AutoGPT is sort of useless?». Давайте разберемся как так получилось, что самый быстрорастущий Гитхаб-репозиторий в истории оказался бесполезным. В посте не буду вдаваться в подробности работы агентов — это все есть в моем гайде.
Главная проблема: AutoGPT просто не справляется с решением сложных задач. Сюда же входит неправильная декомпозиция задач, нехватка памяти, неоптимальное использование запросов в модель и большие расходы. Вместо обещанной автоматизации сложных процессов, пользователям приходится постоянно вмешиваться и уточнять задание — без этого он просто уходит «не туда» и может достаточно долго сжигать на это деньги на запросы.
Откуда тогда такой хайп: не стоит удивляться, что основной хайп пришел от СМИ и Ютуберов в погоне за кликами. Я тоже писал свой обзор, но делал его сдержанным. В это время многие не стеснялись заявлять про наступление AGI. Есть подозрения, что большинство из них делились восторженными отзывами без реального опыта использования.
Светлое будущее: в обратную крайность тоже не стоит впадать. Разработчики знают о текущих проблемах и будут их постепенно решать. Для технологии нормально быть сырой на старте и постепенно улучшаться. Также это не мешает уже сейчас внедрять ИИ для автоматизации конкретных бизнес-процессов. В будущем эти автоматизации сэкономят триллионы долларов для мировой экономики.
😎 Мы с командой уже несколько месяцев активно делаем свой вклад в эти триллионы. Мы успешно автоматизировали бизнес-процессы в продажах и поддержке. Сейчас мы ищем новые сферы для применения ИИ и готовы провести бесплатные консультации. Больше всего интересно пообщаться с бизнесами из двух категорий:
— хотите или уже внедряете ИИ на стороне операционных процессов (продажи, поддержка, etc);
— хотите или уже внедряете ИИ на стороне пользовательского интерфейса;
Напишите мне, если ваши компании относятся к этим категориями 👋
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7❤5🦄3😎3
С момента релиза ChatGPT прошло полгода, и за это время был представлен API и поразительно мощная модель GPT-4. Тем не менее, в общем, мы находимся в той же ситуации, что и полгода назад. Несмотря на то, что каждый день выходят новые продукты и языковые модели — мы до сих пор не увидели значительных прорывов почти во всех отраслях. Это все еще эксперименты.
В чем тогда боттлнек: я уверен, что для революции нам не нужно ждать GPT-5 или новый фреймворк над моделями. Текущее узкое место индустрии — это количество разработчков, которые разрабатывают продукты над языковыми моделями И готовы поверить в свою идею настолько, чтобы заниматься ей хотя бы месяц подряд.
Чем мешает FOMO: мы находимся на диком зададе — идей и возможностей вокруг столько, что сложно выбрать что-то одно и начать этим заниматься. Я без труда нагенерирую сотню идей продуктов, которыми мог бы заняться и они имели бы влияние на пользоватей и бизнес. В такой ситуации невероятно сложно выбрать что-то одно и заниматься только этим. В тоже время, еще и легко оказаться в ситуации, когда кажется, что люди вокруг уже реализовали все возможные идеи — не стоит даже браться. Но это не так.
Приведу пример: на днях Фреймер релизнул свой AI-продукт с генерацией страниц сайта по промпту. Почти сразу вытащили информацию, что там внутри GPT-4 и промпт, который генерирует блоки на псевдо-коде, которые затем уже Фреймер на своей стороне превращает в страницу сайта. Со дня релиза GPT-4 не было никаких технических ограничений, чтобы сделать такой продукт — все реализуется за счет промпта в стандартную модель, которая доступна с середины марта. Ограничение было только в интересе и фокусе разработчиков. Команда фреймера поверила в идею и реализовала ее.
Please open Telegram to view this post
VIEW IN TELEGRAM
❤23😎8🦄5👍3🌭1
Приятно, когда один крупнейших фондов мира описывает тот же самый нарратив, про который я сделал пост три недели назад. Статья получилась хорошая, давайте разберем на какие вещи они обращают внимание при описании архитектуры.
Таких пунктов набролось шесть:
1. In-context learning: все что называется долговременной памятью и умной передачей информации в промпты. В гайде про это можно почитать на странице «векторные эмбединги».
2. Data Preprocessing/Embedding: чтобы передавать информацию в контекст — ее нужно сперва пред-обработать. Этот этап как раз отвечает за разбивку информации на чанки.
3. Промпт-инжиниринг (+промпт-тулинг): сюда они включают составление промпта и склеивание их в цепочку через фреймворки вроде Langchain/LlamaIndex.
4. Инфраструктура: классный рынок, где еще практически нет продуктов. Сейчас все в основном крутится вокруг базовых решений для кэширования и логирования, но дальше мы получим более узконаправленные продукты.
5. Будущее за агентами: тут тоже сходимся во мнении. Технология сильно сырая на текущей стадии, но с огромным потенциалом в будущем. Про агентов тоже есть хорошая страница в гайде — рекомендую.
6. Важность pre-trained моделей: итоговы пункт, где говорят о важности появления моделей, как GPT на рынке и то что это только начало.
🚀️️ Лично от себя отмечу, что я это самая большая легитимизация нашего рынка so far. Я окончательно убедился, что мы находимся в начале пути перед чем-то гиганстким. Также напоминаю, что у нас есть крупнейшее (и крутейшее 😎) сообщество по стэку из статьи — напишите, если тоже хотите попасть.
@prod1337
Please open Telegram to view this post
VIEW IN TELEGRAM
Andreessen Horowitz
Emerging Architectures for LLM Applications
A reference architecture for the LLM app stack. It shows the most common systems, tools, and design patterns used by AI startups and tech companies.
👍13🦄6😎4❤2
За последние недели я пообщался с десятками компаний по теме внедрения LLM. Для каждой я пошэрил свой опыт внедрения и мы нашли места, где они принесут в моменте ценность.
После этого у меня появилась четкая картина в какие места бизнеса сейчас можно уверенно внедрять LLM.
👷 Операционка: повторяемые процессы c учатием людей, коммуникация, особенно когда это складывается в цепочки. В таких местах бизнеса всегда с какой-то вероятностью генерируется брак. Чем больше частей системы между собой взаимодействуют → тем больше вероятность такого брака. Особенные флэшбэки у меня вызывает опыт с операционкой в фудтехе и эдтехе.
За счет LLM удается уменьшить количество подчастей в системе, оптимизировать процесс → снизить издержки и шанс брака. Это дает моментальное влияние на экономику, легко просчитать окупаемость. Тут важно понимать, что код тоже может производить баги. Это особенно валидно на раннем этапе развития языковых моделей — нужно оценивать риск и стоимость ошибки на этапе.
📱 Интерфейсы: это могут быть интерфейсы нового поколения (в том числе голосовые), а может быть просто оптимизация этапов благодаря вызову LLM. СЕО Instacart недавно в подкасте заявила, что видит будущее e-commerce в запросах на человеческом языке вроде «хочу здоровый ужин на троих». На это также накладывается слой голоса, я делал про это отдельный пост. Но и это лишь самый очевидный способ применения в интерфейсе — их намного больше.
Здесь выгоду для бизнеса просчитать сложнее: пользователей нужно будет обучать на новые способы взаимодействия, включится стандартный adoption curve. Но люди постепенно перестроятся за счет снижения когнитивной нагрузки во время выбора.
😎 И это не все: впереди нас ждет еще развитие и адопшен AI-агентов, качественные и удобные опен-сорсные языковые модели, GPT-5. Но уже сейчас можно делать революционные вещи для бизнеса и сейчас самый лучший момент, чтобы начать.
@prod1337
Please open Telegram to view this post
VIEW IN TELEGRAM
❤16😎10👍4🦄3
Вы уже привыкли к потоку bullish-постов по поводу AI и языковых моделей. Но сегодня давайте попробуем посмотреть на этот рынок с другой точки зрения. Мы разберем, почему сейчас плохое время, чтобы запускать AI-продукт.
1. Дистрибуция: еще никогда не было так сложно добиться внимания конечного пользователя с продуктом на стадии MVP. Платные каналы давно уже перегружены и по ним почти невозможно свести экономику. Теперь еще переполнились и нестадартные каналы, которые всегда были отдушиной. Каждый день в Твиттере и на PH я вижу лончи сотен новых AI-продуктов — при всем моем энтузиазме, даже мне это уже надоело и я просто пропускаю их мимо.
Сюда же можно добавить, что большинство таких продуктов построено вокруг подписочной модели. У пользователей постепенно переполняется не только внимание, но и бюджет, который они готовы тратить на «продуктивность» и «прикольные тулы».
2. Технологические риски: релиз GPT языковых моделей открыл огромное пространство для появления новых продуктов. В один момент ML-технологии стали доступны в 10 строк кода всем разработчикам мира. Но демократизация привела и к тому, что AI-фичи больше не считаются конкурентным преиуществом. Другой разработчик точно также быстро напишет промпт и добавит вызов к API OpenAI. Такие решения быстро превращаются в комодити.
Хайп породил за собой и другую волну — техногиганты бросили огромные ресурсы на развитие AI внутри своих продуктов. Каждый разработчик должен считаться с риском, что такой же продукт может стать в ближайшее время частью экосистемы Гугла, Microsoft/OpenAI или Amazon.
@prod1337
Please open Telegram to view this post
VIEW IN TELEGRAM
👍80❤16🌭4🤔3😎3