📄 PaddleOCR: Мощный инструмент для распознавания текста
PaddleOCR — это передовой движок OCR и AI для документов, обеспечивающий высокую точность извлечения текста и понимания документов. Поддерживает множество языков и интегрируется в различные приложения, от стартапов до крупных предприятий.
🚀 Основные моменты:
- Поддержка более 80 языков и сложных элементов документа.
- Высокая точность распознавания текста в различных условиях.
- Легкая интеграция с другими AI-приложениями.
- Поддержка работы на разных аппаратных платформах (CPU, GPU, NPU).
- Широкое сообщество и активное использование в более чем 5,9 тыс. репозиториев.
📌 GitHub: https://github.com/PaddlePaddle/PaddleOCR
#python
PaddleOCR — это передовой движок OCR и AI для документов, обеспечивающий высокую точность извлечения текста и понимания документов. Поддерживает множество языков и интегрируется в различные приложения, от стартапов до крупных предприятий.
🚀 Основные моменты:
- Поддержка более 80 языков и сложных элементов документа.
- Высокая точность распознавания текста в различных условиях.
- Легкая интеграция с другими AI-приложениями.
- Поддержка работы на разных аппаратных платформах (CPU, GPU, NPU).
- Широкое сообщество и активное использование в более чем 5,9 тыс. репозиториев.
📌 GitHub: https://github.com/PaddlePaddle/PaddleOCR
#python
GitHub
GitHub - PaddlePaddle/PaddleOCR: Turn any PDF or image document into structured data for your AI. A powerful, lightweight OCR toolkit…
Turn any PDF or image document into structured data for your AI. A powerful, lightweight OCR toolkit that bridges the gap between images/PDFs and LLMs. Supports 100+ languages. - PaddlePaddle/Paddl...
❤4
Forwarded from Machinelearning
📄 DeepSeek-OCR - модель для распознавания текста 🔍
DeepSeek выпустили мощную OCR-модель, способную преобразовывать изображения документов прямо в Markdown или текст.
Что умеет:
- Распознаёт текст на изображениях и в PDF
- Работает с документами, таблицами и сложными макетами
- Поддерживает разные режимы: Tiny, Small, Base, Large
- Оптимизирована под GPU (PyTorch + CUDA 11.8)
- MIT-лицензия — можно свободно использовать и модифицировать
DeepSeek-OCR достигает высокой точности и эффективности за счёт компрессии визуальных токенов. На Omnidocbench - лучшая точность при минимуме визуальных токенов, превосходит другие OCR-модели по эффективности и скорости.
🟠 HF: https://huggingface.co/deepseek-ai/DeepSeek-OCR
🟠 Github: https://github.com/deepseek-ai/DeepSeek-OCR
🟠 Paper: https://github.com/deepseek-ai/DeepSeek-OCR/blob/main/DeepSeek_OCR_paper.pdf
@ai_machinelearning_big_data
#ocr #DeepSeek
DeepSeek выпустили мощную OCR-модель, способную преобразовывать изображения документов прямо в Markdown или текст.
Что умеет:
- Распознаёт текст на изображениях и в PDF
- Работает с документами, таблицами и сложными макетами
- Поддерживает разные режимы: Tiny, Small, Base, Large
- Оптимизирована под GPU (PyTorch + CUDA 11.8)
- MIT-лицензия — можно свободно использовать и модифицировать
DeepSeek-OCR достигает высокой точности и эффективности за счёт компрессии визуальных токенов. На Omnidocbench - лучшая точность при минимуме визуальных токенов, превосходит другие OCR-модели по эффективности и скорости.
@ai_machinelearning_big_data
#ocr #DeepSeek
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤4👍2
This media is not supported in your browser
VIEW IN TELEGRAM
Python митап от Авито 27 октября в Москве! ☄
Вечером 27 октября вас ждут в офисе на Лесной, чтобы обсудить:
➡ кейс оптимизации GC в Python от Саши Федосеева, backend-инженера из команды Main Page Tech Авито;
➡ как mypy укрощает Python в большой компании вместе с Сергеем Яхницким из Яндекса.
После докладов, как и сказали выше, вместе с участниками спикеры обсудят, подходит ли Python для запуска больших нагруженных решений в формате круглого стола.
Для тех, кто не успевает вырваться из офиса или дома, будет онлайн-трансляция.
Так что не откладывайте, регистрируйтесь и зовите коллег — все подробности по ссылке
Вечером 27 октября вас ждут в офисе на Лесной, чтобы обсудить:
После докладов, как и сказали выше, вместе с участниками спикеры обсудят, подходит ли Python для запуска больших нагруженных решений в формате круглого стола.
Для тех, кто не успевает вырваться из офиса или дома, будет онлайн-трансляция.
Так что не откладывайте, регистрируйтесь и зовите коллег — все подробности по ссылке
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1
🔥На Stepik вышел курс: Linux: полный апгрейд твоих скиллов
Хочешь реально понимать, что происходит под капотом твоей системы, а не просто кликать по GUI?
Без глубокого знания базы ты не инженер - ты просто пользователь.
🔹 В курсе ты:
- Освоишь bash, grep, sed, awk - инструменты, которыми живут админы.
- Разберёшь права, процессы, сеть, файловую систему и научишься чинить всё, что падает.
- Настроишь SSH, firewall, systemd, crontab, демоны и автозапуск.
- Научишься анализировать логи, следить за нагрузкой, и не паниковать при 100% CPU.
💡 Формат: пошаговое объяснение базы и разбор важных практик по работе с Linux.
🎯 После курса ты: будешь чувствовать Linux как родную среду и забудешь, что такое “permission denied”.
🚀 24 часа действует скидка 30%
👉 Учиться со скидкой
Хочешь реально понимать, что происходит под капотом твоей системы, а не просто кликать по GUI?
Без глубокого знания базы ты не инженер - ты просто пользователь.
🔹 В курсе ты:
- Освоишь bash, grep, sed, awk - инструменты, которыми живут админы.
- Разберёшь права, процессы, сеть, файловую систему и научишься чинить всё, что падает.
- Настроишь SSH, firewall, systemd, crontab, демоны и автозапуск.
- Научишься анализировать логи, следить за нагрузкой, и не паниковать при 100% CPU.
💡 Формат: пошаговое объяснение базы и разбор важных практик по работе с Linux.
🎯 После курса ты: будешь чувствовать Linux как родную среду и забудешь, что такое “permission denied”.
🚀 24 часа действует скидка 30%
👉 Учиться со скидкой
❤1🤯1
🧠 Новая работа показывает, что даже небольшая open-source модель может решать сложные математические задачи — если заставить её "думать дольше" с помощью циклов саморазвития рассуждений.
Исследователи взяли 8B-модель на базе DeepSeek и заставили её проходить долгие итеративные reasoning-loops, где каждая итерация — это маленький шаг к более точному решению.
Если модель находит улучшение хоть чуть-чуть лучше предыдущего ответа, цикл продолжается.
Результат: модель решила 5 задач AIME, которые раньше не могла, и даже превзошла точность своего «учителя» — 600B-модели, если брать голосование по итоговым ответам из множества параллельных циклов.
Метод прост:
1️⃣ Проверить текущий ответ
2️⃣ Исправить ошибки
3️⃣ Повторять несколько десятков итераций
Такой подход увеличивает время вычислений на тесте, но даёт гораздо более надёжные решения, фактически расширяя пределы возможностей малых моделей.
📄 Paper: arxiv.org/abs/2510.17498
Исследователи взяли 8B-модель на базе DeepSeek и заставили её проходить долгие итеративные reasoning-loops, где каждая итерация — это маленький шаг к более точному решению.
Если модель находит улучшение хоть чуть-чуть лучше предыдущего ответа, цикл продолжается.
Результат: модель решила 5 задач AIME, которые раньше не могла, и даже превзошла точность своего «учителя» — 600B-модели, если брать голосование по итоговым ответам из множества параллельных циклов.
Метод прост:
1️⃣ Проверить текущий ответ
2️⃣ Исправить ошибки
3️⃣ Повторять несколько десятков итераций
Такой подход увеличивает время вычислений на тесте, но даёт гораздо более надёжные решения, фактически расширяя пределы возможностей малых моделей.
📄 Paper: arxiv.org/abs/2510.17498
👍3