🚀 GitHub решил главную боль open-source ИИ-проектов — теперь inference доступен всем
Новая инициатива GitHub Models позволяет запускать LLM прямо из кода или CI,
⚡️ без API-ключей OpenAI, без развёртывания моделей, без костылей.
🔧 Как это работает:
- Полная совместимость с
- Поддержка GPT‑4o, Llama 3, DeepSeek и др.
- Авторизация через обычный
- Бесплатно для OSS и личных аккаунтов
- Можно использовать даже в GitHub Actions (просто `permissions: models: read`)
💡 Зачем это нужно:
- Убирает барьер входа для пользователей и контрибьюторов
- Помогает легко добавлять ИИ‑фичи в open-source проекты
- Работает с OpenAI SDK, LangChain, Python, Node.js и другими библиотеками
📦 Теперь запускать AI в open-source так же просто, как
📝 Подробности:
https://github.blog/ai-and-ml/llms/solving-the-inference-problem-for-open-source-ai-projects-with-github-models
Новая инициатива GitHub Models позволяет запускать LLM прямо из кода или CI,
⚡️ без API-ключей OpenAI, без развёртывания моделей, без костылей.
🔧 Как это работает:
- Полная совместимость с
openai.ChatCompletion.create
- Поддержка GPT‑4o, Llama 3, DeepSeek и др.
- Авторизация через обычный
GITHUB_TOKEN
- Бесплатно для OSS и личных аккаунтов
- Можно использовать даже в GitHub Actions (просто `permissions: models: read`)
💡 Зачем это нужно:
- Убирает барьер входа для пользователей и контрибьюторов
- Помогает легко добавлять ИИ‑фичи в open-source проекты
- Работает с OpenAI SDK, LangChain, Python, Node.js и другими библиотеками
📦 Теперь запускать AI в open-source так же просто, как
git push
.📝 Подробности:
https://github.blog/ai-and-ml/llms/solving-the-inference-problem-for-open-source-ai-projects-with-github-models
❤6👍2
This media is not supported in your browser
VIEW IN TELEGRAM
CodeEasy: Python Essentials
Отличный способ прокачаться в Python.
🔹 Объясняет сложное простыми словами
🔹 Основан на реальной истории с заданиями по ходу сюжета
🔹 Бесплатный старт
Переходим сюда для старта
Отличный способ прокачаться в Python.
Переходим сюда для старта
Please open Telegram to view this post
VIEW IN TELEGRAM
❤4👍2🔥2
🔍 Regex не прощает ошибок… но с Python мы найдем выход!
Когда в запросе опечатка (`"prro"` вместо "pro"`) — `re.search() ничего не найдёт.
🙅♂️ Regex: [] → *Ноль результатов*
✅ difflib то что нам нужно!
С SequenceMatcher ты можешь находить похожие строки даже с опечатками.
📌 Пример:
🧠 Результат:
📦 Используй difflib для user-friendly поиска и автодополнения. Особенно полезно для:
- Поиска товаров
- Обработки ввода пользователя
- Систем рекомендаций
🔥 Идеально, когда нельзя потерять результат из-за одной буквы!
@pythonl
Когда в запросе опечатка (`"prro"` вместо "pro"`) — `re.search() ничего не найдёт.
🙅♂️ Regex: [] → *Ноль результатов*
✅ difflib то что нам нужно!
С SequenceMatcher ты можешь находить похожие строки даже с опечатками.
📌 Пример:
from difflib import SequenceMatcher
def fuzzy_match(query, products, threshold=0.6):
matches = []
for product in products:
ratio = SequenceMatcher(None, query.lower(), product.lower()).ratio()
if ratio >= threshold:
matches.append((product, f"{ratio:.2f}"))
return matches
🧠 Результат:
[('iPhone 14 Pro Max', '0.88')]
📦 Используй difflib для user-friendly поиска и автодополнения. Особенно полезно для:
- Поиска товаров
- Обработки ввода пользователя
- Систем рекомендаций
🔥 Идеально, когда нельзя потерять результат из-за одной буквы!
@pythonl
👍6❤4🔥4
👾 Разработка реального проекта: игра-платформер на Python
В этом руководстве мы разработаем простой, но полноценный платформер на Python с использованием библиотеки Pygame.
Мы рассмотрим все аспекты игры: создание игрового окна, управление персонажем, обработку столкновений, генерацию уровней и отображение графики.
В конце у вас будет готовый проект, который можно развивать дальше.
Подробности
В этом руководстве мы разработаем простой, но полноценный платформер на Python с использованием библиотеки Pygame.
Мы рассмотрим все аспекты игры: создание игрового окна, управление персонажем, обработку столкновений, генерацию уровней и отображение графики.
В конце у вас будет готовый проект, который можно развивать дальше.
Подробности
❤7👍5🔥3👏1
Forwarded from Kali Linux
This media is not supported in your browser
VIEW IN TELEGRAM
💡 Что умеет:
- Обходит современные защиты: Cloudflare WAF, BrowserScan, Fingerprint, Datadome, Turnstile CAPTCHA
- Эмулирует поведение человека (движения мыши, задержки, сетевое поведение)
- Асинхронность, параллельный запуск, кэш, работа с Sitemap
- Масштабирование через Kubernetes
- Превращение скрапера в десктоп-приложение или веб-интерфейс
⚙️ Botasaurus-driver:
- Быстрый анти-детект драйвер, совместимый с браузером
- API для навигации, кликов, ввода, ожиданий, JS
- Обход CAPTCHA с bypass_cloudflare=True
📦 Экосистема:
- Dockerfile для среды скрапинга
- Starter Template для быстрого старта
- Desktop Starter для десктопных скрапер-приложений
🔗 GitHub: github.com/omkarcloud/botasaurus
#Python #WebScraping #Botasaurus #OpenSource
@linuxkalii
Please open Telegram to view this post
VIEW IN TELEGRAM
❤10👍6🔥5
This media is not supported in your browser
VIEW IN TELEGRAM
⚡️ Open-source инструмент для просмотра CSV, JSON, Excel и других таблиц прямо в терминале — без потери форматирования, аккуратно и читабельно.
🔥 Что умеет:
— Встроенный SQL-движок: фильтры, джойны и анализ прямо в терминале;
— Vim-подобные хоткеи (для фанатов, да 😁);
— Быстрый поиск, работа с несколькими таблицами, поддержка тем (Monokai, Nord и др.).
https://github.com/shshemi/tabiew
🔥 Что умеет:
— Встроенный SQL-движок: фильтры, джойны и анализ прямо в терминале;
— Vim-подобные хоткеи (для фанатов, да 😁);
— Быстрый поиск, работа с несколькими таблицами, поддержка тем (Monokai, Nord и др.).
https://github.com/shshemi/tabiew
❤7👍3🔥3
This media is not supported in your browser
VIEW IN TELEGRAM
Полезный трюк: быстро парсим HTML прямо из строки с помощью selectolax — лёгкой и очень быстрой библиотеки на C, в разы быстрее BeautifulSoup.
Установка:
pip install selectolax
Пример с кодом:
from selectolax.parser import HTMLParser
html = """
<html><body> <h1>Hello</h1> <p class='msg'>World</p> </body></html> """
tree = HTMLParser(html)
print(tree.css_first("h1").text()) # Hello
print(tree.css_first("p.msg").text()) # World
https://www.youtube.com/shorts/CSYJDmt4ztg
Please open Telegram to view this post
VIEW IN TELEGRAM
❤6👍4🔥3😱2
Что дадут эти вызовы функции в консоли?
Anonymous Quiz
13%
0 и 0
11%
Zero Division Error и Zero Division Error
59%
0 и Zero Division Error
6%
Zero Division Error и 0
10%
Посмотреть ответ
👍5❤3
⚡️ DINOv3 - новое семейство фундаментальных моделей для компьютерного зрения, обученных методом SSL. Ключевой особенностью стал прорыв в обучении без размеченных вручную данных: система, натренированная на 1.7 миллиардах изображений, достигает SOTA-производительности.
Backbone DINOv3 превосходит специализированные модели в широком спектре задач, от классификации до сегментации, без необходимости дополнительного дообучения. Модели разных размеров, включая флагманскую версию на 7 миллиардов параметров, уже доступны на Hugging Face под коммерческой лицензией.
github.com
Backbone DINOv3 превосходит специализированные модели в широком спектре задач, от классификации до сегментации, без необходимости дополнительного дообучения. Модели разных размеров, включая флагманскую версию на 7 миллиардов параметров, уже доступны на Hugging Face под коммерческой лицензией.
github.com
❤4👍2
🐍 Полезный совет по Python: используйте
Многие новички пишут так:
Код рабочий, но неэффективный: при каждой конкатенации создаётся новая строка, что сильно замедляет работу на больших объёмах данных.
🚀 Правильный способ — использовать " ".join():
💡 Преимущества:
- Быстрее и эффективнее на больших списках
- Код чище и короче
-Можно легко задавать разделитель (пробел, запятая, \n)
📊 Пример:
Вывод:
📌 Итог
Используйте "".join() для объединения строк из списка — это питонично, быстро и удобно.
"".join()
вместо конкатенации строк в цикле Многие новички пишут так:
words = ["Python", "очень", "крут"]
result = ""
for w in words:
result += w + " "
print(result)
Код рабочий, но неэффективный: при каждой конкатенации создаётся новая строка, что сильно замедляет работу на больших объёмах данных.
🚀 Правильный способ — использовать " ".join():
words = ["Python", "очень", "крут"]
result = " ".join(words)
print(result)
💡 Преимущества:
- Быстрее и эффективнее на больших списках
- Код чище и короче
-Можно легко задавать разделитель (пробел, запятая, \n)
📊 Пример:
lines = ["строка 1", "строка 2", "строка 3"]
text = "\n".join(lines)
print(text)
Вывод:
строка 1
строка 2
строка 3
📌 Итог
Используйте "".join() для объединения строк из списка — это питонично, быстро и удобно.
🔥5❤4👍1