Python RU
13.3K subscribers
947 photos
63 videos
40 files
1.2K links
Все для python разработчиков

админ - @notxxx1

@python_job_interview - Python собеседования

@ai_machinelearning_big_data - машинное обучение

@itchannels_telegram - 🔥лучшие ит-каналы

@programming_books_it - it книги

@pythonl

РКН: clck.ru/3Fmy2j
Download Telegram
🧩 Примеры приложений для Apps SDK от OpenAI

Этот репозиторий демонстрирует примеры UI-компонентов и MCP-серверов для создания приложений на базе ChatGPT. Он служит отправной точкой для разработки собственных приложений, используя Model Context Protocol для интеграции инструментов и интерфейсов.

🚀 Основные моменты:
- Примеры компонентов для Apps SDK.
- Демонстрация работы MCP-серверов.
- Поддержка различных языков программирования (Node.js, Python).
- Возможность создания и кастомизации собственных виджетов.
- Легкая интеграция с ChatGPT.

📌 GitHub: https://github.com/openai/openai-apps-sdk-examples
2👍1🔥1
🖥 Гайд по PostgreSQL для продвинутых разработчиков

PostgreSQL – одна из самых мощных СУБД с открытым исходным кодом. Этот гайд подробно охватывает ключевые аспекты PostgreSQL: от внутренней архитектуры до приёмов оптимизации. Мы рассмотрим администрирование, производительность, расширения, инструменты, а также сравним популярные ORM для Python и Go. В конце приведён список продвинутых вопросов, часто встречающихся на собеседованиях.

🟠Гайд
Please open Telegram to view this post
VIEW IN TELEGRAM
3🔥1
🔍 Исследования Python: эксперименты и оптимизация

Репозиторий предлагает практические эксперименты с современными возможностями Python и их производительностью. Здесь вы найдете бенчмарки, сравнения потоков и процессов, а также изучение новых технологий в экосистеме Python.

🚀 Основные моменты:
- Эксперименты с производительностью Python 3.14 без GIL
- Сравнение потоков и процессов
- Оптимизация использования памяти
- Практические примеры и выводы

📌 GitHub: https://github.com/koenvo/python-experiments

#python
2🔥1
🖥 Python-декоратор - AI-сервис готов

Beam — открытая альтернатива Modal, которая позволяет деплоить любые AI-задачи в serverless-режиме без инфраструктурной боли. Всё, что нужно — декоратор в Python.

Работает очень просто:
1. uv add beam
2. Пишете свой AI-воркфлоу
3. Оборачиваете вызов в метод
4. Добавляете декоратор @endpoint с конфигом сервера

👉 Результат — готовый serverless endpoint.

Ключевые фичи:
→ Запуск контейнеров < 1 секунды
→ Поддержка распределённого хранилища
→ Авто-масштабирование от 0 до сотен контейнеров
→ GPU: 4090, H100 или свои
→ Деплой inference endpoint'ов через декораторы
→ Изолированные песочницы для кода от LLM
→ И главное — 100% open-source + приватность.

https://github.com/beam-cloud/beta9
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍1
Карьерный буст, робот в подарок и призовой фонд 7 500 000 рублей 🤖
Успей зарегистрироваться до 20 октября.


Все это ждет участников трека «Программирование роботов» на всероссийском ИТ-чемпионате МТС True Tech Champ 2025. Присоединяйся, если пишешь на С++, Go, Python, JS, Java, C# или другом языке.

Соревнования пройдут в командах от 2 до 4 человек в несколько этапов:

Квалификация. Тебе предстоит запрограммировать робота на прохождение виртуального лабиринта.
Полуфинал. Ты будешь дистанционно управлять роботом на офлайн-полигоне и наблюдать за его перемещениями в трансляции.
Финал. За две недели до финала организаторы отправят тебе настоящего робота для кастомизации. Ты сможешь модифицировать его, чтобы он оказался быстрее других в многоуровневом офлайн-лабиринте и смог выбить соперников с платформы в шоу-битве.

Команды финалистов получат по одному роботу Waveshare Cobra Flex в подарок и сразятся за крупные денежные призы: 4 000 000 ₽ за первое место, 2 500 000 ₽ за второе и 1 000 000 ₽ за третье.

Еще ты сможешь:

— Получить практический опыт работы с инструментами, с помощью которых создают домашних и промышленных роботов.
— Прокачать компетенции, которые помогут развиваться в ИТ.
— Заявить о себе на всю Россию и ускорить свой профессиональный рост.

📍 Финал состоится 21 ноября в МТС Live Холл в Москве.
👉🏻 Регистрируйся на сайте до 20 октября.
This media is not supported in your browser
VIEW IN TELEGRAM
🖥 Учим Python на ферме - вышла новая игра, где вместо фарминга ты пишешь код

Забудь про грядки и полив — теперь ферма работает на Python. Ты управляешь роботами, автоматизируешь процессы и наблюдаешь, как код превращается в урожай.

Вместо мотыги - код, вместо удобрений - алгоритмы.
Это не симулятор фермера, а тренажёр программиста с юмором и логикой.

- Всё управление через код - роботы выполняют твои Python-команды;

- Обучение встроено в геймплей — осваиваешь основы без нудных туториалов;

- Без уровней и доната - ферма растёт вместе с твоими навыками;

- Есть русский язык и IntelliSense, можно писать даже из VS Code;

У игры уже 95% положительных отзывов в Steam.

Игра превращает обучение Python в чистое удовольствие - просто запускаешь и начинаешь “программировать урожай”.

👉 Играть
Please open Telegram to view this post
VIEW IN TELEGRAM
8
This media is not supported in your browser
VIEW IN TELEGRAM
🖥 Хочешь, чтобы твой Telegram-бот отвечал с помощью ChatGPT?

Сделай это за пару минут: просто установи библиотеку python-telegram-bot, добавь свой OpenAI API-ключ и токен бота, и бот начнёт отвечать на все сообщения с помощью ChatGPT.


from telegram import Update
from telegram.ext import ApplicationBuilder, MessageHandler, filters, ContextTypes
from openai import OpenAI


Укажи свои ключи
OPENAI_API_KEY = "sk-..."
TELEGRAM_TOKEN = "123456789:ABC..."

client = OpenAI(api_key=OPENAI_API_KEY)

async def handle_message(update: Update, context: ContextTypes.DEFAULT_TYPE):
user_text = update.message.text

response = client.chat.completions.create(
model="gpt-4o-mini",
messages=[{"role": "user", "content": user_text}]
)

await update.message.reply_text(response.choices[0].message.content)

app = ApplicationBuilder().token(TELEGRAM_TOKEN).build()
app.add_handler(MessageHandler(filters.TEXT & ~filters.COMMAND, handle_message))
app.run_polling()
Please open Telegram to view this post
VIEW IN TELEGRAM
6👍3
📄 PaddleOCR: Мощный инструмент для распознавания текста

PaddleOCR — это передовой движок OCR и AI для документов, обеспечивающий высокую точность извлечения текста и понимания документов. Поддерживает множество языков и интегрируется в различные приложения, от стартапов до крупных предприятий.

🚀 Основные моменты:
- Поддержка более 80 языков и сложных элементов документа.
- Высокая точность распознавания текста в различных условиях.
- Легкая интеграция с другими AI-приложениями.
- Поддержка работы на разных аппаратных платформах (CPU, GPU, NPU).
- Широкое сообщество и активное использование в более чем 5,9 тыс. репозиториев.

📌 GitHub: https://github.com/PaddlePaddle/PaddleOCR

#python
2
Forwarded from Machinelearning
📄 DeepSeek-OCR - модель для распознавания текста 🔍

DeepSeek выпустили мощную OCR-модель, способную преобразовывать изображения документов прямо в Markdown или текст.

Что умеет:
- Распознаёт текст на изображениях и в PDF
- Работает с документами, таблицами и сложными макетами
- Поддерживает разные режимы: Tiny, Small, Base, Large
- Оптимизирована под GPU (PyTorch + CUDA 11.8)
- MIT-лицензия — можно свободно использовать и модифицировать

DeepSeek-OCR достигает высокой точности и эффективности за счёт компрессии визуальных токенов. На Omnidocbench - лучшая точность при минимуме визуальных токенов, превосходит другие OCR-модели по эффективности и скорости.

🟠HF: https://huggingface.co/deepseek-ai/DeepSeek-OCR
🟠Github: https://github.com/deepseek-ai/DeepSeek-OCR
🟠Paper: https://github.com/deepseek-ai/DeepSeek-OCR/blob/main/DeepSeek_OCR_paper.pdf

@ai_machinelearning_big_data

#ocr #DeepSeek
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
3👍1
This media is not supported in your browser
VIEW IN TELEGRAM
Python митап от Авито 27 октября в Москве!

Вечером 27 октября вас ждут в офисе на Лесной, чтобы обсудить:

кейс оптимизации GC в Python от Саши Федосеева, backend-инженера из команды Main Page Tech Авито;
как mypy укрощает Python в большой компании вместе с Сергеем Яхницким из Яндекса.

После докладов, как и сказали выше, вместе с участниками спикеры обсудят, подходит ли Python для запуска больших нагруженных решений в формате круглого стола.

Для тех, кто не успевает вырваться из офиса или дома, будет онлайн-трансляция.

Так что не откладывайте, регистрируйтесь и зовите коллег — все подробности по ссылке
Please open Telegram to view this post
VIEW IN TELEGRAM
1