This media is not supported in your browser
VIEW IN TELEGRAM
Linux: как быстро найти, какие файлы занимают больше всего места в системе
Когда df -h показывает, что диск забит, но ты не понимаешь, что именно съело память, вот команда, которая спасает.
du -ahx / | sort -rh | head -n 20
-a — считает и файлы, и каталоги
-h — human-readable (МБ, ГБ)
-x — не переходит в другие файловые системы (важно для /proc, /mnt, tmpfs)
sort -rh — сортировка от большего к меньшему
head -n 20 — покажет только топ
Она отлично работает, когда нужно:
– найти огромный лог или зависший кэш
– понять, где лежит более 100 Гигабайт
– навести порядок перед бэкапом системы
Для интерактивного анализа — можно подключить ncdu.
Находим, какие файлы занимают больше всего места в системе
Когда df -h показывает, что диск забит, но ты не понимаешь, что именно съело память, вот команда, которая спасает.
du -ahx / | sort -rh | head -n 20
-a — считает и файлы, и каталоги
-h — human-readable (МБ, ГБ)
-x — не переходит в другие файловые системы (важно для /proc, /mnt, tmpfs)
sort -rh — сортировка от большего к меньшему
head -n 20 — покажет только топ
Она отлично работает, когда нужно:
– найти огромный лог или зависший кэш
– понять, где лежит более 100 Гигабайт
– навести порядок перед бэкапом системы
Для интерактивного анализа — можно подключить ncdu.
Находим, какие файлы занимают больше всего места в системе
❤4👍2🔥1
💼 Готовый проект на Python: асинхронный сервис отслеживания цены акций
Отслеживает цены акций в реальном времени, рассылает push-уведомления при достижении триггеров и предоставляет REST + WebSocket API для фронтенда.
Почему проект ценен для портфолио
- Показывает владение современным стеком: FastAPI + WebSockets + asyncio, PostgreSQL, Redis, Docker, CI/CD.
- Демонстрирует продвинутые практики: типы (pydantic, mypy), тесты (pytest, pytest-asyncio), линтеры, GitHub Actions.
- Подходит для live-демо: легко задеплоить на Render/Fly.io/Hetzner и показать работу в браузере.
➡️ Читать статью
Отслеживает цены акций в реальном времени, рассылает push-уведомления при достижении триггеров и предоставляет REST + WebSocket API для фронтенда.
Почему проект ценен для портфолио
- Показывает владение современным стеком: FastAPI + WebSockets + asyncio, PostgreSQL, Redis, Docker, CI/CD.
- Демонстрирует продвинутые практики: типы (pydantic, mypy), тесты (pytest, pytest-asyncio), линтеры, GitHub Actions.
- Подходит для live-демо: легко задеплоить на Render/Fly.io/Hetzner и показать работу в браузере.
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3👍1🔥1😁1
⚡️ Почему лучшие разработчики всегда на шаг впереди?
Потому что они знают, где брать настоящие инсайд!
Оставь “программирование в вакууме” в прошлом, выбирай свой стек — подпишись и погружайся в поток идей, лайфхаков и знаний, которые не найдёшь в открытом доступе.
ИИ: t.me/ai_machinelearning_big_data
Python: t.me/pythonl
Linux: t.me/linuxacademiya
Мл собес t.me/machinelearning_interview
C++ t.me/cpluspluc
Docker: t.me/DevopsDocker
Хакинг: t.me/linuxkalii
МЛ: t.me/machinelearning_ru
Devops: t.me/DevOPSitsec
Data Science: t.me/data_analysis_ml
Javascript: t.me/javascriptv
C#: t.me/csharp_ci
Java: t.me/java_library
Базы данных: t.me/sqlhub
Python собеседования: t.me/python_job_interview
Мобильная разработка: t.me/mobdevelop
Golang: t.me/Golang_google
React: t.me/react_tg
Rust: t.me/rust_code
ИИ: t.me/vistehno
PHP: t.me/phpshka
Android: t.me/android_its
Frontend: t.me/front
Big Data: t.me/bigdatai
МАТЕМАТИКА: t.me/data_math
Kubernets: t.me/kubernetc
Разработка игр: https://t.me/gamedev
Физика: t.me/fizmat
Папка Go разработчика: t.me/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.me/addlist/eEPya-HF6mkxMGIy
Папка ML: https://t.me/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://t.me/addlist/mzMMG3RPZhY2M2Iy
🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
😆ИТ-Мемы: t.me/memes_prog
🇬🇧Английский: t.me/english_forprogrammers
🧠ИИ: t.me/vistehno
📕Ит-книги: https://t.me/addlist/BkskQciUW_FhNjEy
💼ИТ-вакансии t.me/addlist/_zyy_jQ_QUsyM2Vi
Подпишись, чтобы всегда знать, куда двигаться дальше!
Потому что они знают, где брать настоящие инсайд!
Оставь “программирование в вакууме” в прошлом, выбирай свой стек — подпишись и погружайся в поток идей, лайфхаков и знаний, которые не найдёшь в открытом доступе.
ИИ: t.me/ai_machinelearning_big_data
Python: t.me/pythonl
Linux: t.me/linuxacademiya
Мл собес t.me/machinelearning_interview
C++ t.me/cpluspluc
Docker: t.me/DevopsDocker
Хакинг: t.me/linuxkalii
МЛ: t.me/machinelearning_ru
Devops: t.me/DevOPSitsec
Data Science: t.me/data_analysis_ml
Javascript: t.me/javascriptv
C#: t.me/csharp_ci
Java: t.me/java_library
Базы данных: t.me/sqlhub
Python собеседования: t.me/python_job_interview
Мобильная разработка: t.me/mobdevelop
Golang: t.me/Golang_google
React: t.me/react_tg
Rust: t.me/rust_code
ИИ: t.me/vistehno
PHP: t.me/phpshka
Android: t.me/android_its
Frontend: t.me/front
Big Data: t.me/bigdatai
МАТЕМАТИКА: t.me/data_math
Kubernets: t.me/kubernetc
Разработка игр: https://t.me/gamedev
Физика: t.me/fizmat
Папка Go разработчика: t.me/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.me/addlist/eEPya-HF6mkxMGIy
Папка ML: https://t.me/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://t.me/addlist/mzMMG3RPZhY2M2Iy
🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
😆ИТ-Мемы: t.me/memes_prog
🇬🇧Английский: t.me/english_forprogrammers
🧠ИИ: t.me/vistehno
📕Ит-книги: https://t.me/addlist/BkskQciUW_FhNjEy
💼ИТ-вакансии t.me/addlist/_zyy_jQ_QUsyM2Vi
Подпишись, чтобы всегда знать, куда двигаться дальше!
❤1
This media is not supported in your browser
VIEW IN TELEGRAM
📊 Лучшие базы данных — и где они уместны
1. PostgreSQL — универсальная реляционная БД
→ бизнес-приложения, аналитика, геоданные (PostGIS), JSON + SQL в одном
2. SQLite — встраиваемая БД без сервера
→ мобильные приложения, локальное хранение, CLI-инструменты, тесты
3. MySQL / MariaDB — быстрые SQL-БД для веба
→ сайты, CMS, WordPress, стартапы с LAMP-стеком
4. MongoDB — документо-ориентированная NoSQL
→ JSON‑подобные данные, прототипы, быстро меняющиеся схемы
5. Redis — in-memory key-value store
→ кеширование, очереди, счётчики, real-time метрики
6. ClickHouse — колоночная аналитическая БД
→ аналитика, лог-системы, BI‑дашборды, миллиарды строк — за миллисекунды
7. Neo4j — графовая БД
→ социальные графы, связи между сущностями, рекомендации
8. TimescaleDB — time-series над PostgreSQL
→ телеметрия, мониторинг, временные ряды, IoT
9. Cassandra — масштабируемая распределённая NoSQL
→ high-availability, терабайты данных, логика без JOIN-ов
10. DuckDB — аналитика в памяти, как SQLite для данных
→ локальный OLAP, ML‑воркфлоу, быстрые data pipelines
#databases #backend #dev #sql #nosql
1. PostgreSQL — универсальная реляционная БД
→ бизнес-приложения, аналитика, геоданные (PostGIS), JSON + SQL в одном
2. SQLite — встраиваемая БД без сервера
→ мобильные приложения, локальное хранение, CLI-инструменты, тесты
3. MySQL / MariaDB — быстрые SQL-БД для веба
→ сайты, CMS, WordPress, стартапы с LAMP-стеком
4. MongoDB — документо-ориентированная NoSQL
→ JSON‑подобные данные, прототипы, быстро меняющиеся схемы
5. Redis — in-memory key-value store
→ кеширование, очереди, счётчики, real-time метрики
6. ClickHouse — колоночная аналитическая БД
→ аналитика, лог-системы, BI‑дашборды, миллиарды строк — за миллисекунды
7. Neo4j — графовая БД
→ социальные графы, связи между сущностями, рекомендации
8. TimescaleDB — time-series над PostgreSQL
→ телеметрия, мониторинг, временные ряды, IoT
9. Cassandra — масштабируемая распределённая NoSQL
→ high-availability, терабайты данных, логика без JOIN-ов
10. DuckDB — аналитика в памяти, как SQLite для данных
→ локальный OLAP, ML‑воркфлоу, быстрые data pipelines
#databases #backend #dev #sql #nosql
❤6🔥2
⚡️ Microsoft обновила собственный бесплатный курс по генеративному ИИ
В курсе видео, практика (код) и дополнительные материалы.
Пргорамма курса состоит из изучения структуры и работы LLM, тонкостям промптинга, созданию собственного приложения для генерации изображений, функционалу RAG для LLM и принципам файнтюна.
📌 А здесь мы вылудили полный список бесплатных курсов.
Для прохождения курса нужны:
- учетная запись на Azure
- доступ к api OpenAI
Разумеется, все методики и манипуляции предлагается выполнять обучающимся в экосистеме Microsoft, на их мощностях и с использованием их сервисов.
Бэкенд учебного приложения для генерации картинок - DALLE и Midjourney.
Большие надежды строить относительно курса не стоит - экосисистема Microsoft требует отдельных компетенций, но в качестве базового структурированного курса для новичков - вполне подойдет.
🖥 Курс полностью выложен на Github: https://github.com/microsoft/generative-ai-for-beginners
В курсе видео, практика (код) и дополнительные материалы.
Пргорамма курса состоит из изучения структуры и работы LLM, тонкостям промптинга, созданию собственного приложения для генерации изображений, функционалу RAG для LLM и принципам файнтюна.
📌 А здесь мы вылудили полный список бесплатных курсов.
Для прохождения курса нужны:
- учетная запись на Azure
- доступ к api OpenAI
Разумеется, все методики и манипуляции предлагается выполнять обучающимся в экосистеме Microsoft, на их мощностях и с использованием их сервисов.
Бэкенд учебного приложения для генерации картинок - DALLE и Midjourney.
Большие надежды строить относительно курса не стоит - экосисистема Microsoft требует отдельных компетенций, но в качестве базового структурированного курса для новичков - вполне подойдет.
Please open Telegram to view this post
VIEW IN TELEGRAM
❤5👍2
Forwarded from Machinelearning
Alibaba Group разработали HumanOmniV2, модель на базе
Qwen2.5-Omni-7B-thinker
, которая получила навык осмысления визуального контекста за счет изменения самого процесса мышления модели. Ее научили следовать строгому формату: сначала описать контекст, потом рассуждать и только затем давать ответ.Теперь, прежде чем отвечать на вопрос, модель генерирует подробное описание сцены в теге
<context>
. На этом этапе она фиксирует, кто что делает, какой фон, какие звуки слышны. Только после этого в теге <think>
она строит логическую цепочку рассуждений, связывая вопрос с собранным контекстом. И лишь в конце выдает результат в теге <answer>
.Чтобы этот подход работал, его усилили системой вознаграждений на основе RL. За точность и правильный формат модель получает стандартные награды, но были введены и две новых:
Для оценки HumanOmniV2 создали бенчмарк IntentBench (633 видео, 2689 вопросов) на основе Social-IQ 2.0, EMER и MDPE.
Его фишка в том, что вопросы требуют одновременного анализа: видеоряда (жесты, микровыражения), диалогов (тон, смысл реплик) и социального контекста (ирония, обман, скрытые намерения).
Тестовая модель обошла открытые аналоги на 3 бенчмарках:
@ai_machinelearning_big_data
#AI #ML #MMLM #HumanOmniV2 #Alibaba
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4🔥2
✨ Google представили GenAI Processors — open-source библиотеку для создания AI-приложений в реальном времени
GenAI Processors — это новый инструмент от команды Google DeepMind, разработанный для быстрой сборки потоковых и мультимодальных AI‑систем. Библиотека обеспечивает удобную работу с цепочками обработки данных, модульную архитектуру и поддержку стриминга.
Основные возможности:
— Потоковый ввод/вывод (stream-based I/O)
— Простая сборка пайплайнов через chaining
— Модульность и переиспользуемость (composability)
— Поддержка Gemini и Gemini Live API
— Асинхронная архитектура с минимальной задержкой
🔧 GenAI Processors позволяет разработчикам легко собирать голосовых агентов, мультимодальные интерфейсы и реактивные приложения на базе LLM.
🔗 GitHub: https://github.com/google-gemini/genai-processors
📖 Блог: https://developers.googleblog.com/en/genai-processors
GenAI Processors — это новый инструмент от команды Google DeepMind, разработанный для быстрой сборки потоковых и мультимодальных AI‑систем. Библиотека обеспечивает удобную работу с цепочками обработки данных, модульную архитектуру и поддержку стриминга.
Основные возможности:
— Потоковый ввод/вывод (stream-based I/O)
— Простая сборка пайплайнов через chaining
— Модульность и переиспользуемость (composability)
— Поддержка Gemini и Gemini Live API
— Асинхронная архитектура с минимальной задержкой
🔧 GenAI Processors позволяет разработчикам легко собирать голосовых агентов, мультимодальные интерфейсы и реактивные приложения на базе LLM.
🔗 GitHub: https://github.com/google-gemini/genai-processors
📖 Блог: https://developers.googleblog.com/en/genai-processors
❤3🔥2👍1
🔥 БЕСПЛАТНЫЙ КУРС ПО СОЗДАНИЮ НЕЙРО-СОТРУДНИКОВ НА GPT И ДРУГИХ LLM 🔥
Ищете практический и углубленный курс, чтобы освоить создание нейро-сотрудников? Мы создали курс из 5 объемных занятий. Это именно то, что нужно, чтобы прокачать свои навыки абсолютно бесплатно!
📌 Темы занятий:
1. Введение в мир нейро-сотрудников
2. Как работают LLM и их аналоги
3. Создание базы знаний для нейро-сотрудника (RAG)
4. Тестирование и отладка нейро-сотрудников
5. Интеграция нейро-сотрудников в Production
Вот 5 тем курса - он максимально простой и доступный, общеобразовательный, без какого-либо сложного программирования 📚Прохождение этого курса, скорее всего, займет у вас от 1 до 3 часов
🤖 Присоединяйтесь к нашему бесплатному курсу и разберитесь в этой увлекательной теме с нами!
Ищете практический и углубленный курс, чтобы освоить создание нейро-сотрудников? Мы создали курс из 5 объемных занятий. Это именно то, что нужно, чтобы прокачать свои навыки абсолютно бесплатно!
📌 Темы занятий:
1. Введение в мир нейро-сотрудников
2. Как работают LLM и их аналоги
3. Создание базы знаний для нейро-сотрудника (RAG)
4. Тестирование и отладка нейро-сотрудников
5. Интеграция нейро-сотрудников в Production
Вот 5 тем курса - он максимально простой и доступный, общеобразовательный, без какого-либо сложного программирования 📚Прохождение этого курса, скорее всего, займет у вас от 1 до 3 часов
🤖 Присоединяйтесь к нашему бесплатному курсу и разберитесь в этой увлекательной теме с нами!
❤1😁1
🐍 Совет дня для продвинутых Python-разработчиков
Хочешь писать чище и безопаснее, когда работаешь с вложенными
А вот компактный трюк на каждый день — безопасное извлечение с
📌 Почему это полезно:
- Нет KeyError
- Код читаемый
- Масштабируемо для любых уровней вложенности
🔥 Применяй в проектах, где много данных с API или JSON — избавит от лишних try/except и защитит от неожиданных крашей.
Python — это не только про лаконичность, но и про стабильность
Хочешь писать чище и безопаснее, когда работаешь с вложенными
dict
? Забудь про dict.get(...).get(...)
и используй collections.ChainMap
или types.SimpleNamespace
— но ещё лучше: pydantic
или dotmap
.А вот компактный трюк на каждый день — безопасное извлечение с
functools.reduce
:
from functools import reduce
def deep_get(dictionary, keys, default=None):
return reduce(lambda d, key: d.get(key, default) if isinstance(d, dict) else default, keys, dictionary)
data = {"user": {"profile": {"email": "test@example.com"}}}
email = deep_get(data, ["user", "profile", "email"])
📌 Почему это полезно:
- Нет KeyError
- Код читаемый
- Масштабируемо для любых уровней вложенности
🔥 Применяй в проектах, где много данных с API или JSON — избавит от лишних try/except и защитит от неожиданных крашей.
Python — это не только про лаконичность, но и про стабильность
❤1