physħ — физика и космос
8.89K subscribers
108 photos
4 videos
30 files
434 links
Здесь много физики и космоса, и немного личных впечатлений автора.

Вопросы и предложения отправляйте мне в личку @korzhimanov

Мой сайт-визитка: http://korzhimanov.ru
Мой научно-популярный блог: http://physh.ru
Download Telegram
Прежде, чем растаять на вашей ладони, снежинки совершают длительное и увлекательное приключение. Их путь начинается в виде крошечного кристаллика льда на высоте в несколько километров, а падение может продолжаться несколько часов. Все это время снежинка растет, образуя в итоге причудливый, но удивительно симметричный узор. Почему так происходит? Почему снежинка всегда имеет шесть лучей, но не существует двух одинаковых снежинок? Или всё же не всегда? По просьбе N+1 попробовал разобраться в этих вопросах: https://nplus1.ru/material/2021/01/05/snowflakes
This media is not supported in your browser
VIEW IN TELEGRAM
Немного залепительного видео. В этом ролике показано, как изменится видимое положение 40 000 ближайших к Земле звёзд за следующие 80 000 лет. Их траектории были рассчитаны по наблюдательным данным телескопа Gaia, главная задача которого — измерение как можно более точного положения сотен миллионов звёзд нашей Галактики. Это позволит, во-первых, оценить расстояние до них за счёт измерения параллакса, а во-вторых, измерить скорость их движения — по изменению положения во временем. В результате будет создана самая точная карта Млечного пути.
Завтра первый рабочий день — хороший повод обновить обои на рабочем столе. Мне кажется, эта фотография, полученная Хабблом, подойдёт как ничто иное. На ней изображены гигантская туманность NGC 2014 и её соседка NGC 2020 из Большого Магелланово облака. NGC 2014 представляет собой скопление молодых ярких звёзд, нагревающих своим ультрафиолетовым излучением окружающий газ и выбрасывающих в него потоки энергичных частиц, а NGC 2020 образована одной сверхтяжёлой звездой, претерпевшей ряд взрывов.
This media is not supported in your browser
VIEW IN TELEGRAM
В свежем выпуске журнала Physical Review X опубликована статья, в которой сообщается о первом успешном эксперименте по фотографированию пути лазерного импульса в трёхмерном пространстве. Результат можно посмотреть на этом видео.
Пара пояснений. Во-первых, «сфотографировать свет», конечно, нельзя — сам по себе он не отражает световые лучи, и поэтому мы его видим только, когда он попадает нам в глаз. Чтобы увидеть свет «сбоку», его пропускают через туман, который рассеивает часть света, так что некоторое его количество попадает в объектив фотоаппарата — то есть видим мы не сам свет, а его «след» в тумане.

Во-вторых, не существует настолько быстрых затворов, чтобы делать последовательные снимки светового импульса, бегущего в воздухе, — для создания видео потребовалось бы делать снимки с частотой в терагерцы, в то время как современные сверхбыстрые камеры позволяют достичь только гигагерцев. Поэтому в реальности, чтобы получить видео, лазер стреляет много раз подряд одинаковыми импульсами, а фотоаппарат делает серию снимков с разной задержкой. То есть на каждом фото — разные лазерные импульсы. Более того, поскольку на самом деле рассевается мало света, то каждая фотография получается чересчур тёмной, и надо делать несколько фотографий в одном и том же положении.

Ну и наконец, надо сказать, что подобными вещами люди занимаются давно, и достижение конкретно этой работы в том, что удалось реконструировать движение импульса в трёхмерном пространстве — ранее удавалось отслеживать только двумерное движение, глядя на него сбоку. Проблема с визуализацией трёхмерного движения света в том, что сам свет и рассеянные фотоны, принимаемые камерой, двигаются с одной и той же скоростью, в результате полученные изображения сильно искажены из-за релятивистских эффектов. В частности, импульс, двигающийся на камеру, выглядит длиннее, чем двигающийся от неё. Учёным пришлось разработать специальный алгоритм, учитывающий этот эффект. Для людей с технически бекграундом: решалась нелинейная обратная задача с применением методов машинного обучения без учителя.

Для интересующихся ссылка на статью: https://journals.aps.org/prx/abstract/10.1103/PhysRevX.11.011005
На день науки прочитал лекцию для школьников про квантовый вакуум и то, как мы собираемся его исследовать при помощи сверхмощных лазеров. Сегодня её выложили на Youtube, так что кому интересно, велкам: https://www.youtube.com/watch?v=eFwOqze428s
Всех с праздником! И вместо банальных поздравлений в этот день предлагаю сделать ещё один шаг в сторону избавления от ложных стереотипов и почитать архивные статьи из моего блога о двух замечательных женщинах-учёных с непростой судьбой: Эмми Нётер, создавшей современную общую алгебру, http://bit.ly/noether-3c807EY и Лизе Мейтнер, которую Эйнштейн однажды назвал «нашей Мари Кюри», http://bit.ly/meitner-3qqCMDm
Возможно, вы слышали на днях в новостях о запуске на Байкале нейтринной обсерватории, так вот, думаю, будет правильным пояснить, что на самом деле всё, что произошло — это просто визит министра науки с перерезанием ленточки (вернее нажиманием кнопочки).

Сама обсерватория работает и параллельно достраивается уже несколько лет, и ещё будет достраиваться какое-то время. В перспективе она должна достичь размеров знаменитой нейтринной обсерватории IceCube, расположенной во льдах Антарктиды, и дополнить её наблюдениями с противоположной полусферы неба.

Подробнее об этом проекте и нейтринной астрономии можно почитать в недавних текстах Игоря Иванова в N+1 https://nplus1.ru/material/2021/03/13/baikal-gvd а также в моей давней статье о причинах, почему стоит следить за нейтринной физикой: https://physh.ru/post/шесть-причин-следить-за-достижениями-нейтринной-физики/
Forwarded from astronomy (Artyom Novichonok)
КАК ПОЯВЛЯЮТСЯ ЛИНИИ В АСТРОНОМИЧЕСКИХ СПЕКТРАХ

Если пропустить свет Солнца через призму, на фоне радужного непрерывного спектра фотосферы (континуума, характерного для любого нагретого тела) можно обнаружить тёмные линии - линии поглощения. Они возникают из-за того, что на пути между раскалённой поверхностью звёзды (фотосферы) и наблюдателем расположен относительно холодный участок солнечной атмосферы.

Каждая линия соответствует строго определённому энергетическому переходу в атоме конкретного химического элемента. Поэтому, изучая спектры, можно однозначно судить о химическом составе звёздных атмосфер.

Спектры туманностей из горячего ионизированного газа выглядят совсем иначе: здесь яркие светящиеся линии (эмиссионные, или линии излучения) доминируют над континуумом. Эти эмиссионные линии возникают в результате энергетических переходов атомов, возбуждённых ультрафиолетовым излучением молодых звёзд (как в регионах HII) или горячего белого карлика (как в планетарных туманностях).
Михаил Кацнельсон — один из ведущих физиков-теоретиков современности, который занимается широким спектром проблем от квантовой теории многочастичных систем и магнетизма до основ квантовой физики и теории сложности. На N+1 вышло его свежее интервью про недавние работы об эмерджентной квантовости нейронных сетей. Не могу сказать, что сильно понятно, но точно крайне интересно: https://nplus1.ru/material/2021/04/05/katsnelson-on-quantum-mind
Я часто пишу о том, что учёные усиленно ищут «новую физику» в самых разных экспериментах. Современная так называемая стандартная модель элементарных частиц описывает все известные данные, однако, во-первых, она не является внутренне единой, поскольку состоит из нескольких частей, хотя и аналогичных по строению, но всё же лишь формально объединённых друг с другом, а во-вторых, не включает в себя гравитацию и не может объяснить феномены тёмного вещества и тёмной энергии. Поэтому-то учёные и стремятся найти какие-то признаки отклонения от Стандартной модели в экспериментах с элементарными частицами: такие исследования проводятся на Большом адронном коллайдере, на нескольких нейтринных детекторах, на детекторах частиц тёмного вещества типа XENON и LUX, в экспериментах с антивеществом и т. д.

Одним из таких экспериментов является измерение магнитного момента элементарной частицы, известной как мюон. Мюон представляет собой полный аналог электрона, только в 200 раз тяжелее. Так же, как и электрон, мюон заряжен, а кроме того является элементарным магнитиком, то есть несёт ненулевой магнитный момент. Магнитный момент элементарных частиц принято характеризовать так называемым g-фактором, и если бы не было квантовых флуктуаций вакуума, то и для электрона, и для мюона он равнялся бы двойке.

Известно, однако, что за счёт взаимодействия с нулевыми колебаниями вакуума, g-фактор отличается от двойки, и это отличие можно рассчитать в рамках Стандартной модели. Так вот, в экспериментах (называемых весьма оригинально Мюон g минус 2), проведённых в 1997—2001 годах и окончательно опубликованных в 2006 году, вдруг оказалось, что разность (g—2), измеренная у мюона, заметно отличается от этих расчётов. К сожалению, точности тех измерений было недостаточно для однозначного утверждения об открытии, поэтому с 2017 года аналогичный, но более точный эксперимент проводится в Фермилабе.

Почем я об этом пишу? Буквально вчера, вышла статья с результатами этого эксперимента, в которой подтверждаются результаты 2000-х годов, а суммарная точность измерения такова, что отличие от Стандартной модели достигло уровня 4,2 сигма, что соответствует вероятности случайного отклонения равной приблизительно 1/40000 — это ещё не открытие по строгим меркам физики элементарных частиц, но уже очень близко.

На это сообщение активно отреагировали теоретики, выложив за сутки на arxiv.org уже десятки работ, предлагающие различные варианты расширения Стандартной модели, которые давали бы нужное значение g—2. Для выбора верного нужны дополнительные измерения, и желательно, в экспериментах с другими частицами.

Чуть больше подробностей на N+1: https://nplus1.ru/news/2021/04/08/muon-g-2-first-results
Ссылка на оригинальную статью: https://doi.org/10.1103/PhysRevLett.126.141801
physħ — физика и космос
Я часто пишу о том, что учёные усиленно ищут «новую физику» в самых разных экспериментах. Современная так называемая стандартная модель элементарных частиц описывает все известные данные, однако, во-первых, она не является внутренне единой, поскольку состоит…
Ситуация с аномальным магнитным моментом мюона оказалась даже более интересной, чем я об этом писал на днях. Оказывается, буквально за сутки до объявления результатов свежих экспериментов, в Nature была опубликована статья теоретиков с новой теоретической оценкой, основанной на трудоёмких численных расчётах. И оказалось, что эта оценка сильно отличается от консенсусных расчётов, выполненных по другим методикам. Таким образом, возможно, никакой «новой» физики для объяснения эксперимента не требуется, а расхождение было вызвано неточностью теоретической модели. Авторам статьи в Nature осталось только убедить в этом остальных физиков.

Подробности в статье Игоря Иванова на Элементах: https://elementy.ru/novosti_nauki/433800/Novye_rezultaty_obostryayut_i_zaputyvayut_zagadku_anomalnogo_magnitnogo_momenta_myuona
Media is too big
VIEW IN TELEGRAM
Ко Дню космонавтики Яндекс приготовил аудиопутешествие на 53,5 миллиона световых лет от Земли.

Музыкальные треки космического плейлиста основаны на астрофизических данных. Источниками вдохновения послужили колебания яркости звезд, спектры пульсаров и динамика солнечной активности — данные небесных тел предоставили проект «Радиоастрон» Астрокосмического центра ФИАН, AAVSO, SWPC и NASA.

Аудиопутешествие состоит из 10 треков и бонусного эпизода от известных популяризаторов науки — Вячеслава Авдеева, Владимира Сурдина и других.

Послушайте, как «звучат» небесные тела: звёзды, пульсары и целые галактики!
https://clck.ru/UCQDR
Институт прикладной физики РАН, в котором я работаю, в федеральной повестке появляется, пожалуй, по всего трём поводам: гиротронам для термоядерного реактора ITER, самому мощному лазерному комплексу в России и участию в детектировании гравитационных волн на установках LIGO. Последние два непосредственно связаны с именем Ефима Хазанова, академика РАН, лауреата Госпремии, одним из самых цитируемых учёных России (индекс Хирша — 72). Работы по созданию лазерного комплекса он возглавлял, а участие в LIGO активно курировал.

Так вот, сегодня Ефим Хазанов был задержан сотрудниками полиции за репосты в Facebook
https://ru.wikinews.org/wiki/В_Нижнем_Новгороде_за_посты_в_Facebook_задержан_академик_РАН_Ефим_Хазанов

UPD Составили протокол по ч. 2 ст. 20.2 КоАП РФ (Организация либо проведение публичного мероприятия без подачи в установленном порядке уведомления о проведении публичного мероприятия), завтра суд, из отделения отпустили
Media is too big
VIEW IN TELEGRAM
«Мы не заключены в те рамки, которые видим каждый день» — сказала однажды Алия Григ в интервью, из которого я узнала про нее и ее деятельность.

Космический визионер, мечтающий о городе в космосе, а пока запускающий образовательные стартапы, приняла участие в перфоманс-студии The Glenlivet. Где рассказала меньше о космосе, а больше о правилах, и тут все просто — #меняйправила, не изменяя себе.

В этом интервью нет науки в чистом виде, но велика концентрация науки жизни. И видео захватывающе эффектно!
Насколько сложно построить свою колонию на другой планете, имея под собой лишь знания контролируемого термоядерного синтеза и тепловой энергии электромагнитного излучения? Легко ли добыть гелий 3 из атмосферы Юпитера, имея при этом ограниченный запас химического топлива? А давайте попробуем узнать! Приглашаем всех, кому интересно покорять новые возможности игры Kerbal Space Program, присоединяйтесь к сообществу KerbalX Program, где можно всегда попробовать себя в роли космического исследователя и продвинутого инженера-ракетостроителя! Чем дальше от Кербина, тем сложнее вернуться назад..