Всех с праздником! И вместо банальных поздравлений в этот день предлагаю сделать ещё один шаг в сторону избавления от ложных стереотипов и почитать архивные статьи из моего блога о двух замечательных женщинах-учёных с непростой судьбой: Эмми Нётер, создавшей современную общую алгебру, http://bit.ly/noether-3c807EY и Лизе Мейтнер, которую Эйнштейн однажды назвал «нашей Мари Кюри», http://bit.ly/meitner-3qqCMDm
physħ
Женщина, которая изобрела общую алгебру
Математик Эмми Нётер была гением, положившим начало новому подходу в физике.
Возможно, вы слышали на днях в новостях о запуске на Байкале нейтринной обсерватории, так вот, думаю, будет правильным пояснить, что на самом деле всё, что произошло — это просто визит министра науки с перерезанием ленточки (вернее нажиманием кнопочки).
Сама обсерватория работает и параллельно достраивается уже несколько лет, и ещё будет достраиваться какое-то время. В перспективе она должна достичь размеров знаменитой нейтринной обсерватории IceCube, расположенной во льдах Антарктиды, и дополнить её наблюдениями с противоположной полусферы неба.
Подробнее об этом проекте и нейтринной астрономии можно почитать в недавних текстах Игоря Иванова в N+1 https://nplus1.ru/material/2021/03/13/baikal-gvd а также в моей давней статье о причинах, почему стоит следить за нейтринной физикой: https://physh.ru/post/шесть-причин-следить-за-достижениями-нейтринной-физики/
Сама обсерватория работает и параллельно достраивается уже несколько лет, и ещё будет достраиваться какое-то время. В перспективе она должна достичь размеров знаменитой нейтринной обсерватории IceCube, расположенной во льдах Антарктиды, и дополнить её наблюдениями с противоположной полусферы неба.
Подробнее об этом проекте и нейтринной астрономии можно почитать в недавних текстах Игоря Иванова в N+1 https://nplus1.ru/material/2021/03/13/baikal-gvd а также в моей давней статье о причинах, почему стоит следить за нейтринной физикой: https://physh.ru/post/шесть-причин-следить-за-достижениями-нейтринной-физики/
N + 1 — главное издание о науке, технике и технологиях
Кто стрелял?
Как физики топят стеклянные шары в Байкале, чтобы найти астрофизические нейтрино
Первому апреля посвящается: https://elementy.ru/novosti_nauki/433793/Makroskopicheskiy_obekt_pochti_pereveden_v_kvantovoe_sostoyanie_na_ocheredi_chelovek (про макроскопический объект, кстати, не шутка)
Элементы
Макроскопический объект почти переведен в квантовое состояние — на очереди человек?
Законы квантового мира кажутся нам парадоксальными лишь потому, что мы, неквантовые мыслящие наблюдатели, вынуждены смотреть на этот мир со стороны. Но что если перевести самого человека в определенное квантовое состояние и дать ему возможность взглянуть…
Forwarded from astronomy (Artyom Novichonok)
КАК ПОЯВЛЯЮТСЯ ЛИНИИ В АСТРОНОМИЧЕСКИХ СПЕКТРАХ
Если пропустить свет Солнца через призму, на фоне радужного непрерывного спектра фотосферы (континуума, характерного для любого нагретого тела) можно обнаружить тёмные линии - линии поглощения. Они возникают из-за того, что на пути между раскалённой поверхностью звёзды (фотосферы) и наблюдателем расположен относительно холодный участок солнечной атмосферы.
Каждая линия соответствует строго определённому энергетическому переходу в атоме конкретного химического элемента. Поэтому, изучая спектры, можно однозначно судить о химическом составе звёздных атмосфер.
Спектры туманностей из горячего ионизированного газа выглядят совсем иначе: здесь яркие светящиеся линии (эмиссионные, или линии излучения) доминируют над континуумом. Эти эмиссионные линии возникают в результате энергетических переходов атомов, возбуждённых ультрафиолетовым излучением молодых звёзд (как в регионах HII) или горячего белого карлика (как в планетарных туманностях).
Если пропустить свет Солнца через призму, на фоне радужного непрерывного спектра фотосферы (континуума, характерного для любого нагретого тела) можно обнаружить тёмные линии - линии поглощения. Они возникают из-за того, что на пути между раскалённой поверхностью звёзды (фотосферы) и наблюдателем расположен относительно холодный участок солнечной атмосферы.
Каждая линия соответствует строго определённому энергетическому переходу в атоме конкретного химического элемента. Поэтому, изучая спектры, можно однозначно судить о химическом составе звёздных атмосфер.
Спектры туманностей из горячего ионизированного газа выглядят совсем иначе: здесь яркие светящиеся линии (эмиссионные, или линии излучения) доминируют над континуумом. Эти эмиссионные линии возникают в результате энергетических переходов атомов, возбуждённых ультрафиолетовым излучением молодых звёзд (как в регионах HII) или горячего белого карлика (как в планетарных туманностях).
Михаил Кацнельсон — один из ведущих физиков-теоретиков современности, который занимается широким спектром проблем от квантовой теории многочастичных систем и магнетизма до основ квантовой физики и теории сложности. На N+1 вышло его свежее интервью про недавние работы об эмерджентной квантовости нейронных сетей. Не могу сказать, что сильно понятно, но точно крайне интересно: https://nplus1.ru/material/2021/04/05/katsnelson-on-quantum-mind
N + 1 — главное издание о науке, технике и технологиях
«Это не та квантовость»
Михаил Кацнельсон — об опасностях редукционизма и квантовости нейросетей
Я часто пишу о том, что учёные усиленно ищут «новую физику» в самых разных экспериментах. Современная так называемая стандартная модель элементарных частиц описывает все известные данные, однако, во-первых, она не является внутренне единой, поскольку состоит из нескольких частей, хотя и аналогичных по строению, но всё же лишь формально объединённых друг с другом, а во-вторых, не включает в себя гравитацию и не может объяснить феномены тёмного вещества и тёмной энергии. Поэтому-то учёные и стремятся найти какие-то признаки отклонения от Стандартной модели в экспериментах с элементарными частицами: такие исследования проводятся на Большом адронном коллайдере, на нескольких нейтринных детекторах, на детекторах частиц тёмного вещества типа XENON и LUX, в экспериментах с антивеществом и т. д.
Одним из таких экспериментов является измерение магнитного момента элементарной частицы, известной как мюон. Мюон представляет собой полный аналог электрона, только в 200 раз тяжелее. Так же, как и электрон, мюон заряжен, а кроме того является элементарным магнитиком, то есть несёт ненулевой магнитный момент. Магнитный момент элементарных частиц принято характеризовать так называемым g-фактором, и если бы не было квантовых флуктуаций вакуума, то и для электрона, и для мюона он равнялся бы двойке.
Известно, однако, что за счёт взаимодействия с нулевыми колебаниями вакуума, g-фактор отличается от двойки, и это отличие можно рассчитать в рамках Стандартной модели. Так вот, в экспериментах (называемых весьма оригинально Мюон g минус 2), проведённых в 1997—2001 годах и окончательно опубликованных в 2006 году, вдруг оказалось, что разность (g—2), измеренная у мюона, заметно отличается от этих расчётов. К сожалению, точности тех измерений было недостаточно для однозначного утверждения об открытии, поэтому с 2017 года аналогичный, но более точный эксперимент проводится в Фермилабе.
Почем я об этом пишу? Буквально вчера, вышла статья с результатами этого эксперимента, в которой подтверждаются результаты 2000-х годов, а суммарная точность измерения такова, что отличие от Стандартной модели достигло уровня 4,2 сигма, что соответствует вероятности случайного отклонения равной приблизительно 1/40000 — это ещё не открытие по строгим меркам физики элементарных частиц, но уже очень близко.
На это сообщение активно отреагировали теоретики, выложив за сутки на arxiv.org уже десятки работ, предлагающие различные варианты расширения Стандартной модели, которые давали бы нужное значение g—2. Для выбора верного нужны дополнительные измерения, и желательно, в экспериментах с другими частицами.
Чуть больше подробностей на N+1: https://nplus1.ru/news/2021/04/08/muon-g-2-first-results
Ссылка на оригинальную статью: https://doi.org/10.1103/PhysRevLett.126.141801
Одним из таких экспериментов является измерение магнитного момента элементарной частицы, известной как мюон. Мюон представляет собой полный аналог электрона, только в 200 раз тяжелее. Так же, как и электрон, мюон заряжен, а кроме того является элементарным магнитиком, то есть несёт ненулевой магнитный момент. Магнитный момент элементарных частиц принято характеризовать так называемым g-фактором, и если бы не было квантовых флуктуаций вакуума, то и для электрона, и для мюона он равнялся бы двойке.
Известно, однако, что за счёт взаимодействия с нулевыми колебаниями вакуума, g-фактор отличается от двойки, и это отличие можно рассчитать в рамках Стандартной модели. Так вот, в экспериментах (называемых весьма оригинально Мюон g минус 2), проведённых в 1997—2001 годах и окончательно опубликованных в 2006 году, вдруг оказалось, что разность (g—2), измеренная у мюона, заметно отличается от этих расчётов. К сожалению, точности тех измерений было недостаточно для однозначного утверждения об открытии, поэтому с 2017 года аналогичный, но более точный эксперимент проводится в Фермилабе.
Почем я об этом пишу? Буквально вчера, вышла статья с результатами этого эксперимента, в которой подтверждаются результаты 2000-х годов, а суммарная точность измерения такова, что отличие от Стандартной модели достигло уровня 4,2 сигма, что соответствует вероятности случайного отклонения равной приблизительно 1/40000 — это ещё не открытие по строгим меркам физики элементарных частиц, но уже очень близко.
На это сообщение активно отреагировали теоретики, выложив за сутки на arxiv.org уже десятки работ, предлагающие различные варианты расширения Стандартной модели, которые давали бы нужное значение g—2. Для выбора верного нужны дополнительные измерения, и желательно, в экспериментах с другими частицами.
Чуть больше подробностей на N+1: https://nplus1.ru/news/2021/04/08/muon-g-2-first-results
Ссылка на оригинальную статью: https://doi.org/10.1103/PhysRevLett.126.141801
nplus1.ru
Эксперимент Muon g-2 увидел отклонения от Стандартной модели в измерениях магнитного момента мюона
Эксперимент Muon g-2 в Фермилаб, который должен с высокой точностью измерить значение аномального магнитного момента мюона, представил первые результаты. Полученное значение совпало с результатами аналогичного эксперимента E821 в Брукхейвенской национальной…
physħ — физика и космос
Я часто пишу о том, что учёные усиленно ищут «новую физику» в самых разных экспериментах. Современная так называемая стандартная модель элементарных частиц описывает все известные данные, однако, во-первых, она не является внутренне единой, поскольку состоит…
Ситуация с аномальным магнитным моментом мюона оказалась даже более интересной, чем я об этом писал на днях. Оказывается, буквально за сутки до объявления результатов свежих экспериментов, в Nature была опубликована статья теоретиков с новой теоретической оценкой, основанной на трудоёмких численных расчётах. И оказалось, что эта оценка сильно отличается от консенсусных расчётов, выполненных по другим методикам. Таким образом, возможно, никакой «новой» физики для объяснения эксперимента не требуется, а расхождение было вызвано неточностью теоретической модели. Авторам статьи в Nature осталось только убедить в этом остальных физиков.
Подробности в статье Игоря Иванова на Элементах: https://elementy.ru/novosti_nauki/433800/Novye_rezultaty_obostryayut_i_zaputyvayut_zagadku_anomalnogo_magnitnogo_momenta_myuona
Подробности в статье Игоря Иванова на Элементах: https://elementy.ru/novosti_nauki/433800/Novye_rezultaty_obostryayut_i_zaputyvayut_zagadku_anomalnogo_magnitnogo_momenta_myuona
Элементы
Новые результаты обостряют и запутывают загадку аномального магнитного момента мюона
Два десятилетия назад выяснилось, что теория и эксперимент расходятся в определении одной из важнейших характеристик мюонов — аномального магнитного момента. Пока теоретики гадали, какая Новая физика может за этим стоять, экспериментаторы готовили новый,…
Media is too big
VIEW IN TELEGRAM
Ко Дню космонавтики Яндекс приготовил аудиопутешествие на 53,5 миллиона световых лет от Земли.
Музыкальные треки космического плейлиста основаны на астрофизических данных. Источниками вдохновения послужили колебания яркости звезд, спектры пульсаров и динамика солнечной активности — данные небесных тел предоставили проект «Радиоастрон» Астрокосмического центра ФИАН, AAVSO, SWPC и NASA.
Аудиопутешествие состоит из 10 треков и бонусного эпизода от известных популяризаторов науки — Вячеслава Авдеева, Владимира Сурдина и других.
Послушайте, как «звучат» небесные тела: звёзды, пульсары и целые галактики!
https://clck.ru/UCQDR
Музыкальные треки космического плейлиста основаны на астрофизических данных. Источниками вдохновения послужили колебания яркости звезд, спектры пульсаров и динамика солнечной активности — данные небесных тел предоставили проект «Радиоастрон» Астрокосмического центра ФИАН, AAVSO, SWPC и NASA.
Аудиопутешествие состоит из 10 треков и бонусного эпизода от известных популяризаторов науки — Вячеслава Авдеева, Владимира Сурдина и других.
Послушайте, как «звучат» небесные тела: звёзды, пульсары и целые галактики!
https://clck.ru/UCQDR
Институт прикладной физики РАН, в котором я работаю, в федеральной повестке появляется, пожалуй, по всего трём поводам: гиротронам для термоядерного реактора ITER, самому мощному лазерному комплексу в России и участию в детектировании гравитационных волн на установках LIGO. Последние два непосредственно связаны с именем Ефима Хазанова, академика РАН, лауреата Госпремии, одним из самых цитируемых учёных России (индекс Хирша — 72). Работы по созданию лазерного комплекса он возглавлял, а участие в LIGO активно курировал.
Так вот, сегодня Ефим Хазанов был задержан сотрудниками полиции за репосты в Facebook
https://ru.wikinews.org/wiki/В_Нижнем_Новгороде_за_посты_в_Facebook_задержан_академик_РАН_Ефим_Хазанов
UPD Составили протокол по ч. 2 ст. 20.2 КоАП РФ (Организация либо проведение публичного мероприятия без подачи в установленном порядке уведомления о проведении публичного мероприятия), завтра суд, из отделения отпустили
Так вот, сегодня Ефим Хазанов был задержан сотрудниками полиции за репосты в Facebook
https://ru.wikinews.org/wiki/В_Нижнем_Новгороде_за_посты_в_Facebook_задержан_академик_РАН_Ефим_Хазанов
UPD Составили протокол по ч. 2 ст. 20.2 КоАП РФ (Организация либо проведение публичного мероприятия без подачи в установленном порядке уведомления о проведении публичного мероприятия), завтра суд, из отделения отпустили
ru.wikinews.org
В Нижнем Новгороде за посты в Facebook задержан академик РАН Ефим Хазанов — Викиновости
Media is too big
VIEW IN TELEGRAM
«Мы не заключены в те рамки, которые видим каждый день» — сказала однажды Алия Григ в интервью, из которого я узнала про нее и ее деятельность.
Космический визионер, мечтающий о городе в космосе, а пока запускающий образовательные стартапы, приняла участие в перфоманс-студии The Glenlivet. Где рассказала меньше о космосе, а больше о правилах, и тут все просто — #меняйправила, не изменяя себе.
В этом интервью нет науки в чистом виде, но велика концентрация науки жизни. И видео захватывающе эффектно!
Космический визионер, мечтающий о городе в космосе, а пока запускающий образовательные стартапы, приняла участие в перфоманс-студии The Glenlivet. Где рассказала меньше о космосе, а больше о правилах, и тут все просто — #меняйправила, не изменяя себе.
В этом интервью нет науки в чистом виде, но велика концентрация науки жизни. И видео захватывающе эффектно!
Насколько сложно построить свою колонию на другой планете, имея под собой лишь знания контролируемого термоядерного синтеза и тепловой энергии электромагнитного излучения? Легко ли добыть гелий 3 из атмосферы Юпитера, имея при этом ограниченный запас химического топлива? А давайте попробуем узнать! Приглашаем всех, кому интересно покорять новые возможности игры Kerbal Space Program, присоединяйтесь к сообществу KerbalX Program, где можно всегда попробовать себя в роли космического исследователя и продвинутого инженера-ракетостроителя! Чем дальше от Кербина, тем сложнее вернуться назад..
Кто выживет на Титанике? — первая задача, которую решают все начинающие в Data Science. Цель задачи — построить модель, которая сможет предсказать, остался произвольный пассажир в живых или нет.
23 мая пройдет бесплатный онлайн-митап для всех, кто задумывается о профессии в Data Science, на котором вы сможете решить эту задачу.
Под руководством эксперта Дмитрия Крылова вы попробуете себя в роли дата сайентиста, получите ответы на популярные вопросы о работе с данными и сможете выиграть сертификат на обучение.
❗️Регистрируйтесь бесплатно — https://clc.am/3TtXRg
23 мая пройдет бесплатный онлайн-митап для всех, кто задумывается о профессии в Data Science, на котором вы сможете решить эту задачу.
Под руководством эксперта Дмитрия Крылова вы попробуете себя в роли дата сайентиста, получите ответы на популярные вопросы о работе с данными и сможете выиграть сертификат на обучение.
❗️Регистрируйтесь бесплатно — https://clc.am/3TtXRg
Forwarded from Гриша Тагильцев
Push me
And then just touch me…
Сегодняшний пост #науказбс написал я сам, так как мой приятель и коллега Джордж Хит (один из авторов работы) не говорит по-русски. Я расскажу про новый метод, который изобрели в нашей лабе: локализационную атомно-силовую микроскопию (Localization AFM). Звучит сложно, но на самом деле это очень крутая штука.
Наша лаба занимается атомно-силовой микроскопией (АСМ): мы разрабатываем для нее новые примочки и применяем это в изучении биологии.
Коротко, что такое АСМ:
Представьте, что вы с завязанным глазами пытаетесь нащупать дорогу при помощи трости. То, как четко вы “видите” дорогу, зависит от нескольких факторов: острота трости, чувствительность руки и твердость поверхности.
Так и устроена АСМ: острая иголка прикреплена к чувствительной руке (cantilever). Вы водите этой иголкой по поверхности образца и по отклонениям руки вычисляете 3D-изображение этой поверхности. Так достаточно острые иголки (с несколькими атомами на конце) позволяют “видеть” поверхность белков и ДНК, а иногда даже атомов.
Теперь про Localization AFM:
Попробуйте с закрытыми глазами нащупать очертания стакана пальцем или карандашом: это не так сложно. А теперь повторите то же самое теннисным мячиком: скорее всего в стакан он не влезет, и вы не сможете нащупать дно. Единственная часть стакана, которую вы можете достоверно нащупать любым предметом — это его края, потому что они находятся наверху стакана.
В АСМ вы не знаете точную форму иглы, поэтому достоверными можно считать только верхние точки на 3D-изображении. Чем ниже точка, тем меньше вероятность того, что она определена правильно. Другими словами высота каждой точки на АСМ-изображении пропорциональна вероятности того, что эта точка “правдива” (это не совсем так, есть нюансы).
Теперь представьте, что вы сканируете АСМ-иглой один и тот же образец много раз подряд и получаете много похожих 3D-изображений. Эти изображения немного разные из-за внутреннего шума микроскопа и теплового движения атомов образца. Дальше используя нехитрые вычисления можно составить карту наиболее правдивых точек на 3D-изображении и определить их правдивость. В этом и заключается метод Localization AFM.
Данным методом Джордж смог получить 3D-изображение поверхности белка аквапорин Z с разрешением 0,4нм — даже можно разглядеть отдельно торчащие аминокислоты! Помню, когда Джордж показал идею проекта у нас в лабе, я подумал: “Это же бомба! Ну почему это придумал не я…”
Эта работа — пример того, как можно добиться революционных результатов на микроскопе, который изобрели еще 2000х, используя простой вычислительный метод из другого микроскопа, который изобрели еще в 90е. Точно это одна из самых резонансных публикаций в биофизике в последние годы. И это только начало: метод все больше будет развиваться и применяться.
Результаты опубликованы в Nature (бесплатно можно прочитать тут). Визуальное объяснение работы на видео внизу поста.
Пост Джорджа про данную работу (на английском): тык.
ЗЫ. Раньше я рассказывал, как похожим на АСМ методом смогли записать память на один атом: тык.
ЗЫЫ. Про свой проект я тоже как-нибудь расскажу, но его сначала доделать надо:)
Всем добра,
Тг
#науказбс
And then just touch me…
Сегодняшний пост #науказбс написал я сам, так как мой приятель и коллега Джордж Хит (один из авторов работы) не говорит по-русски. Я расскажу про новый метод, который изобрели в нашей лабе: локализационную атомно-силовую микроскопию (Localization AFM). Звучит сложно, но на самом деле это очень крутая штука.
Наша лаба занимается атомно-силовой микроскопией (АСМ): мы разрабатываем для нее новые примочки и применяем это в изучении биологии.
Коротко, что такое АСМ:
Представьте, что вы с завязанным глазами пытаетесь нащупать дорогу при помощи трости. То, как четко вы “видите” дорогу, зависит от нескольких факторов: острота трости, чувствительность руки и твердость поверхности.
Так и устроена АСМ: острая иголка прикреплена к чувствительной руке (cantilever). Вы водите этой иголкой по поверхности образца и по отклонениям руки вычисляете 3D-изображение этой поверхности. Так достаточно острые иголки (с несколькими атомами на конце) позволяют “видеть” поверхность белков и ДНК, а иногда даже атомов.
Теперь про Localization AFM:
Попробуйте с закрытыми глазами нащупать очертания стакана пальцем или карандашом: это не так сложно. А теперь повторите то же самое теннисным мячиком: скорее всего в стакан он не влезет, и вы не сможете нащупать дно. Единственная часть стакана, которую вы можете достоверно нащупать любым предметом — это его края, потому что они находятся наверху стакана.
В АСМ вы не знаете точную форму иглы, поэтому достоверными можно считать только верхние точки на 3D-изображении. Чем ниже точка, тем меньше вероятность того, что она определена правильно. Другими словами высота каждой точки на АСМ-изображении пропорциональна вероятности того, что эта точка “правдива” (это не совсем так, есть нюансы).
Теперь представьте, что вы сканируете АСМ-иглой один и тот же образец много раз подряд и получаете много похожих 3D-изображений. Эти изображения немного разные из-за внутреннего шума микроскопа и теплового движения атомов образца. Дальше используя нехитрые вычисления можно составить карту наиболее правдивых точек на 3D-изображении и определить их правдивость. В этом и заключается метод Localization AFM.
Данным методом Джордж смог получить 3D-изображение поверхности белка аквапорин Z с разрешением 0,4нм — даже можно разглядеть отдельно торчащие аминокислоты! Помню, когда Джордж показал идею проекта у нас в лабе, я подумал: “Это же бомба! Ну почему это придумал не я…”
Эта работа — пример того, как можно добиться революционных результатов на микроскопе, который изобрели еще 2000х, используя простой вычислительный метод из другого микроскопа, который изобрели еще в 90е. Точно это одна из самых резонансных публикаций в биофизике в последние годы. И это только начало: метод все больше будет развиваться и применяться.
Результаты опубликованы в Nature (бесплатно можно прочитать тут). Визуальное объяснение работы на видео внизу поста.
Пост Джорджа про данную работу (на английском): тык.
ЗЫ. Раньше я рассказывал, как похожим на АСМ методом смогли записать память на один атом: тык.
ЗЫЫ. Про свой проект я тоже как-нибудь расскажу, но его сначала доделать надо:)
Всем добра,
Тг
#науказбс
YouTube
Localization Atomic Force Microscopy
A visual description of our recent work on improving Atomic Force Microscopy image resolution using localization methods. For full details of our work please see the publication Heath et. al., Localization Atomic Force Microscopy. Nature, 594, pages 385–390…
Пока я в отпуске, полюбуйтесь-ка какую красоту сделали в Европейской южной обсерватории. Это фотографии нескольких близлежащих галактик, полученные наложением оптических изображений в нескольких диапазонах и изображений в радиодиапазоне.
Такие изображения позволяют определить положения молодых звёзд и разогреваемого ими газа в их окрестностях. Изучая их, учёные пытаются понять, что именно заставляет газ конденсироваться в звёзды.
Ярким золотистым свечением на карте помечены горячие облака ионизованных водорода, кислорода и серы, которые свидетельствуют о присутствии новорождённых звёзд, тогда как голубоватые области отражают распределение немного более старых звёзд.
Такие изображения позволяют определить положения молодых звёзд и разогреваемого ими газа в их окрестностях. Изучая их, учёные пытаются понять, что именно заставляет газ конденсироваться в звёзды.
Ярким золотистым свечением на карте помечены горячие облака ионизованных водорода, кислорода и серы, которые свидетельствуют о присутствии новорождённых звёзд, тогда как голубоватые области отражают распределение немного более старых звёзд.