Я знаю, что есть много школьников, живо интересующихся что и как работает, но плохо воспринимающих физику. В подавляющем большинстве случаев это не из-за лени или недостатка природных способностей, а из-за плохих учителей и системы школьного образования в России. И если даже ваш учитель физики не так уж плох, проблемы могут быть с математикой. К сожалению, то, как её преподают в наших школах, бесконечно далеко от того, что она на самом деле представляет из себя.
К счастью, в последнее время появляется всё больше возможностей обучаться школьным предметам по-новому. На одну из них я и хочу обратить ваше внимание сегодня. Это проект PopMath, который проводит оффлайн-занятия по математике для всех желающих. Основная целевая группа — это, конечно, старшеклассники и первокурсники, но интересно будет и тем, кто школу закончил давно, а в математике так по-хорошему и не разобрался.
Основные принципы обучения:
- полный курс математики от начальной школы до конца 11-го класса
- понимать, а не заучивать
- активное общение преподавателя с обучаемыми
Сейчас проект как раз набирает очередные группы в Москве сроком на 3,5 месяца. Примеры лекций, программа, стоимость и прочие детали по ссылке: http://popmath.ru/going_offline/
В телеграме свои вопросы можно задать здесь: @sowinaya_dusha
К счастью, в последнее время появляется всё больше возможностей обучаться школьным предметам по-новому. На одну из них я и хочу обратить ваше внимание сегодня. Это проект PopMath, который проводит оффлайн-занятия по математике для всех желающих. Основная целевая группа — это, конечно, старшеклассники и первокурсники, но интересно будет и тем, кто школу закончил давно, а в математике так по-хорошему и не разобрался.
Основные принципы обучения:
- полный курс математики от начальной школы до конца 11-го класса
- понимать, а не заучивать
- активное общение преподавателя с обучаемыми
Сейчас проект как раз набирает очередные группы в Москве сроком на 3,5 месяца. Примеры лекций, программа, стоимость и прочие детали по ссылке: http://popmath.ru/going_offline/
В телеграме свои вопросы можно задать здесь: @sowinaya_dusha
Каждые семь лет в европейском сообществе учёных, занимающихся экспериментальной физикой элементарных частиц, проходят масштабные обсуждения по выработке так называемой Европейской стратегии в области физики частиц (European Strategy for Particle Physics) — главного документа, который направляет работу многотысячного коммьюнити в следующие годы.
В 2006 году эта стратегия была сконцентрирована вокруг поисков бозона Хиггса на Большом адронном коллайдере, который планировался к запуску в 2008 году, а в 2013 — на более подробном изучении свойств этого бозона, открытого-таки в 2012 году, и поиске новой физики на БАК.
Очередной апдейт стратегии намечен на текущий год, и физики уже активно обсуждают, что в неё должно войти. Обзору основных предложений посвящён свежий выпуск журнала Nature Physics, в котором редакторы также приводят и краткое резюме: https://www.nature.com/articles/s41567-020-0876-y
Основной особенностью текущей ситуации является то, что на БАК физики за пределами Стандартной модели не нашли, и маловероятно, что найдут. Поэтому учёные в основном обсуждают, что может прийти ему на смену.
Основных варианта, по сути, три. Первый — это «ещё больший» адронный коллайдер, условно называемый пока Future Circular Collider. О нём подробно около года назад писал на «Элементах» Игорь Иванов, а я его пересказывал в канале: https://t.me/physh/675
Если кратко, FCC — это циклический ускоритель с длиной кольца порядка 100 км — почти в пять раз больше, чем у БАК. В первые пару десятилетий в нём будут ускоряться и сталкиваться электроны и позитроны с относительно небольшой, но рекордной для этих частиц энергией в 360 ГэВ. Затем ускорителю сделают апгрейд и пустят по нему протоны с энергией около 100 ТэВ — в семь раз больше, чем на БАК. В целом, такой коллайдер, может быть запущен уже в 2040 году, и должен проработать порядка 50 лет с перерывами.
Второй вариант: это рекордно большой линейный электрон-позитронный коллайдер CLIC (Compact Linear Collider). Сейчас подобный проект ILC на энергию частиц в 250 ГэВ планируется начать строить в Японии. Хотя там есть сложности, Игорь и я о них тоже писали: https://t.me/physh/688
Планируется, что CLIC будет иметь длину до 50 км, что позволит ускорить электроны и позитроны до 3 ТэВ. Для этого, правда, будет использована совершенно новая технология: ускорительные поля в резонаторах будут создаваться не внешними источниками питания, а другим электронным пучком, что позволит создавать более высокие ускоряющие поля.
По оценкам, такой коллайдер можно поэтапно построить к 2050-м годам, разбив его на три этапа со всё большей энергией, каждый из которых будет работать по 7-8 лет, плюс ещё по два года на апгрейд. В полном сборе коллайдер сможет работать до 2060-х годов.
Наконец, в-третьих, помимо коллайдеров развиваются и другие подходы. В частности, обсуждают эксперименты с пучками, бомбардирующими плотные стационарные мишени (так называемые beam-dump). Про один подобный эксперимент SHiP я пару лет назад писал для N+1: https://nplus1.ru/material/2018/06/19/ship-sps
Ну и, конечно, всё более модной становится тема нейтринных экспериментов. Самые крупные из них с использованием ускорителей: DUNE в США и Hyper-Kamiokande в Японии. Естественно, команды и там, и там интернациональные, и европейцы их обсуждают тоже.
Приведут ли эти проекты к действительно крупным открытиям, или позволят лишь получить три-четыре новых цифры после запятой в уже известных результатах, никто не знает, тем не менее если не попробуем, то и не узнаем.
В 2006 году эта стратегия была сконцентрирована вокруг поисков бозона Хиггса на Большом адронном коллайдере, который планировался к запуску в 2008 году, а в 2013 — на более подробном изучении свойств этого бозона, открытого-таки в 2012 году, и поиске новой физики на БАК.
Очередной апдейт стратегии намечен на текущий год, и физики уже активно обсуждают, что в неё должно войти. Обзору основных предложений посвящён свежий выпуск журнала Nature Physics, в котором редакторы также приводят и краткое резюме: https://www.nature.com/articles/s41567-020-0876-y
Основной особенностью текущей ситуации является то, что на БАК физики за пределами Стандартной модели не нашли, и маловероятно, что найдут. Поэтому учёные в основном обсуждают, что может прийти ему на смену.
Основных варианта, по сути, три. Первый — это «ещё больший» адронный коллайдер, условно называемый пока Future Circular Collider. О нём подробно около года назад писал на «Элементах» Игорь Иванов, а я его пересказывал в канале: https://t.me/physh/675
Если кратко, FCC — это циклический ускоритель с длиной кольца порядка 100 км — почти в пять раз больше, чем у БАК. В первые пару десятилетий в нём будут ускоряться и сталкиваться электроны и позитроны с относительно небольшой, но рекордной для этих частиц энергией в 360 ГэВ. Затем ускорителю сделают апгрейд и пустят по нему протоны с энергией около 100 ТэВ — в семь раз больше, чем на БАК. В целом, такой коллайдер, может быть запущен уже в 2040 году, и должен проработать порядка 50 лет с перерывами.
Второй вариант: это рекордно большой линейный электрон-позитронный коллайдер CLIC (Compact Linear Collider). Сейчас подобный проект ILC на энергию частиц в 250 ГэВ планируется начать строить в Японии. Хотя там есть сложности, Игорь и я о них тоже писали: https://t.me/physh/688
Планируется, что CLIC будет иметь длину до 50 км, что позволит ускорить электроны и позитроны до 3 ТэВ. Для этого, правда, будет использована совершенно новая технология: ускорительные поля в резонаторах будут создаваться не внешними источниками питания, а другим электронным пучком, что позволит создавать более высокие ускоряющие поля.
По оценкам, такой коллайдер можно поэтапно построить к 2050-м годам, разбив его на три этапа со всё большей энергией, каждый из которых будет работать по 7-8 лет, плюс ещё по два года на апгрейд. В полном сборе коллайдер сможет работать до 2060-х годов.
Наконец, в-третьих, помимо коллайдеров развиваются и другие подходы. В частности, обсуждают эксперименты с пучками, бомбардирующими плотные стационарные мишени (так называемые beam-dump). Про один подобный эксперимент SHiP я пару лет назад писал для N+1: https://nplus1.ru/material/2018/06/19/ship-sps
Ну и, конечно, всё более модной становится тема нейтринных экспериментов. Самые крупные из них с использованием ускорителей: DUNE в США и Hyper-Kamiokande в Японии. Естественно, команды и там, и там интернациональные, и европейцы их обсуждают тоже.
Приведут ли эти проекты к действительно крупным открытиям, или позволят лишь получить три-четыре новых цифры после запятой в уже известных результатах, никто не знает, тем не менее если не попробуем, то и не узнаем.
Nature Physics
Strategy for the future
The impending update to the European Strategy for Particle Physics is an apt moment to chart the future of the field — a future that should be supported and ensured.
Общая теория относительности Эйнштейна является основной теорией гравитации в современной физике. Одним из её предсказаний является то, что орбита объекта, движущегося в поле тяготения другого объекта, не замкнута, как в случае ньютоновского тяготения, а прецессирует в плоскости орбиты в направлении движения. Этот эффект, известный как прецессия Шварцшильда, впервые наблюдался на примере орбиты Меркурия вокруг Солнца и когда-то стал первым наблюдательным подтверждением теории Эйнштейна. И вот, спустя сто лет, удалось зарегистрировать его же для движения звезды вокруг чёрной дыры.
В качестве массивной чёрной дыры выступал так называемый объект Стрелец A* — компактный радиоисточник, расположенный в 26 000 световых лет от Солнца в центре нашей галактики Млечного Пути. По оценкам учёных, масса этого объекта достигает 4 млн масс Солнца, и есть все основания полагать, что он представляет собой именно чёрную дыру.
Вокруг Стрельца A* имеется плотное звёздное скопление, одна из звёзд которого, S2, в ближайшей точке своей орбиты подходит к сверхмассивной чёрной дыре на расстояние менее 20 млрд км (это всего в сто двадцать раз больше расстояния между Солнцем и Землей). S2 одна из самых тесно сближающихся со чёрной дырой звёзд. В точке наибольшего сближения она движется со скоростью, составляющей почти три процента от скорости света, а полный орбитальный оборот совершает за 16 лет.
Большинство звёзд и планет двигаются по вытянутым орбиты и оказываются то ближе к центральному объекту, то дальше от него. При этом теория гравитации Эйнштейна предсказывает, что орбита должна прецессировать, то есть положение точек её наименьшего и наибольшего удаления от тяготеющего центра с каждым оборотом меняется: каждый следующий виток поворачивается по отношению к предыдущему на определённый угол. Общая теория относительности точно предсказывает, насколько должна сдвигаться орбита, и последние измерения, выполненные для звезды S2, в точности соответствуют этой теории.
Кроме того, это измерение позволяют узнать больше об окрестностях чёрной дыры в центре нашей Галактики. Движение звезды S2 хорошо укладывается в общую теорию относительности, и это позволяет наложить более жёсткие ограничения на количество тёмного вещества в окрестностях Стрельца A*.
В качестве массивной чёрной дыры выступал так называемый объект Стрелец A* — компактный радиоисточник, расположенный в 26 000 световых лет от Солнца в центре нашей галактики Млечного Пути. По оценкам учёных, масса этого объекта достигает 4 млн масс Солнца, и есть все основания полагать, что он представляет собой именно чёрную дыру.
Вокруг Стрельца A* имеется плотное звёздное скопление, одна из звёзд которого, S2, в ближайшей точке своей орбиты подходит к сверхмассивной чёрной дыре на расстояние менее 20 млрд км (это всего в сто двадцать раз больше расстояния между Солнцем и Землей). S2 одна из самых тесно сближающихся со чёрной дырой звёзд. В точке наибольшего сближения она движется со скоростью, составляющей почти три процента от скорости света, а полный орбитальный оборот совершает за 16 лет.
Большинство звёзд и планет двигаются по вытянутым орбиты и оказываются то ближе к центральному объекту, то дальше от него. При этом теория гравитации Эйнштейна предсказывает, что орбита должна прецессировать, то есть положение точек её наименьшего и наибольшего удаления от тяготеющего центра с каждым оборотом меняется: каждый следующий виток поворачивается по отношению к предыдущему на определённый угол. Общая теория относительности точно предсказывает, насколько должна сдвигаться орбита, и последние измерения, выполненные для звезды S2, в точности соответствуют этой теории.
Кроме того, это измерение позволяют узнать больше об окрестностях чёрной дыры в центре нашей Галактики. Движение звезды S2 хорошо укладывается в общую теорию относительности, и это позволяет наложить более жёсткие ограничения на количество тёмного вещества в окрестностях Стрельца A*.
Forwarded from AstroAlert | Наблюдательная астрономия
Звезда Бетельгейзе уже практически вернулась к своей нормальной яркости!
Согласно фотометрическим наблюдениям, которые присылают астрономы и любители со всего мира на сайт Американской ассоциации наблюдателей переменных звезд (https://bit.ly/3apQz5n), текущий ее блеск около +0,5 зв. вел.
Астрономы предполагают, что настолько сильное ослабление блеска Бетельгейзе, начавшееся в середине октября 2019 года и завершившееся 23 февраля 2020 года на отметке около +1,65 зв. вел., могло быть связано с резким охлаждением поверхности звезды из-за исключительно высокого уровня звездной активности либо же выбросом пыли по направлению к нам. В настоящее время нет никаких признаков того, что звезда может вспыхнуть как сверхновая!
Фото: созвездие Орион, снятое 17 апреля 2020 года на астроферме «Астроверты» в горах Архыза. Автор снимка: Стас Короткий; Параметры: Sony a7S + Samyang 24mm/1.4@2.0, ISO-6400, 10 сек.
Согласно фотометрическим наблюдениям, которые присылают астрономы и любители со всего мира на сайт Американской ассоциации наблюдателей переменных звезд (https://bit.ly/3apQz5n), текущий ее блеск около +0,5 зв. вел.
Астрономы предполагают, что настолько сильное ослабление блеска Бетельгейзе, начавшееся в середине октября 2019 года и завершившееся 23 февраля 2020 года на отметке около +1,65 зв. вел., могло быть связано с резким охлаждением поверхности звезды из-за исключительно высокого уровня звездной активности либо же выбросом пыли по направлению к нам. В настоящее время нет никаких признаков того, что звезда может вспыхнуть как сверхновая!
Фото: созвездие Орион, снятое 17 апреля 2020 года на астроферме «Астроверты» в горах Архыза. Автор снимка: Стас Короткий; Параметры: Sony a7S + Samyang 24mm/1.4@2.0, ISO-6400, 10 сек.
This media is not supported in your browser
VIEW IN TELEGRAM
Это видео было снято 9 апреля с борта миссии BepiColombo, направляющейся к Меркурию и совершившей пролёт вблизи Земли. За время съёмки расстояние от аппарата до Земли уменьшилось с 281 940 км до 128 000 км.
Этот пролёт — первый из девяти гравитационных манёвров, которые должны вывести BepiColombo на орбиту вокруг Меркурия к декабрю 2025 году. Остальные пролёты, правда, будут вблизи Венеры и самого Меркурия.
Этот пролёт — первый из девяти гравитационных манёвров, которые должны вывести BepiColombo на орбиту вокруг Меркурия к декабрю 2025 году. Остальные пролёты, правда, будут вблизи Венеры и самого Меркурия.
Кстати, если вы думаете, что Меркурий — это скучный раскалённый и безжизненный мир, то ошибаетесь. Эта планета скрывает немало тайн. Например, на её поверхности нашли признаки наличия водяного льда. И это при том, что её температура местами достигает 450°C! Кроме того, Меркурий, несмотря на свой размер, по видимому, обладает огромным ядром, и единственная помимо Земли твёрдая планета, имеющая магнитное поле. Об этих и других загадках, которые летит разгадывать BepiColombo, моя свежая статья в блоге: bit.ly/mercury-5-mysteries
physħ
Пять загадок Меркурия, на которые может дать ответ BepiColombo
Меркурий представляет собой пустынный мир, который, на первый взгляд, выглядит не слишком интересным. Однако он оказался полон загадок. Например, несмотря на температуру поверхности в 450°C, на Меркурии, похоже, присутствует водяной лёд! Кроме того, по всей…
Forwarded from Rings & Moons
В 2008 году астрономы объявили об обнаружении экзопланеты у звезды Фомальгаут, расположенной на расстоянии 25 световых лет от Солнца. Тогда эта новость вызвала большой ажиотаж. Дело в том, что отличие от подавляющего большинства других экзопланет, которые находят при помощи транзитного метода или метода радиальных скоростей, Фомальгаут b был обнаружен напрямую — на снимке, сделанном телескопом Hubble.
Справедливости ради стоит сказать, что уже тогда некоторые астрономы высказали сомнения в корректности подобного вывода. Снимок Hubble говорил о том, что Фомальгаут b это крупный газовый гигант, по размерам превосходящий Юпитер. В то же время, телескопу Spitzer не удалось зарегистрировать инфракрасного излучения, соответствующего подобному объекту. Но проведенные астрономами дополнительные наблюдения подтвердили наличие объекта, и он был признан экзопланетой. Дошло до того, что по итогам организованного в 2015 году конкурса, МАС присвоил Фомальгаут b имя Дагон, которое можно ,было использовать в качестве ее официального обозначения.
Но, похоже, теперь имя Дагон снова станет свободным. Свежие снимки Hubble показали, что экзопланета… исчезла. Конечно, во вселенной далекой далекой галактики объяснение было бы простым — тут явно не обошлось без Звезды смерти. Но в нашем мире, конечно, все устроено несколько сложнее. Еще раз перепроверив старые данные и соотнеся их с результатами новых наблюдений астрономы пришли к выводу что, скорее всего, Hubble сфотографировал пылевое облако, образовавшееся в результате столкновения двух крупных ледяных астероидов. Это может объяснить, почему Spitzer не смог зафиксировать инфракрасное излучение. За прошедшие десять лет облако рассеялось и теперь Hubble больше не может его наблюдать.
Конечно, никому не нравятся подобные «закрытия». Но данная история еще раз наглядно демонстрирует, как работает наука: даже если у вас на руках есть красивый ответ, это не значит, что можно останавливаться. Нужно учитывать все имеющиеся факты, не отбрасывая не вписывающиеся в картину мелкие детали. И даже в этом случае нужно всегда перепроверять результаты. Ну и также это показывает, что в науке не всегда работают житейские принципы «здравого смысла». В случае с Дагоном у астрономов имелись прямые изображения объекта, что на первый взгляд является куда более весомым доказательством, чем данные «косвенных» способов вроде того же метода радиальных скоростей. Но в итоге все оказалось ровно наоборот.
https://universemagazine.com/17818/
https://www.spacetelescope.org/news/heic2006/
Справедливости ради стоит сказать, что уже тогда некоторые астрономы высказали сомнения в корректности подобного вывода. Снимок Hubble говорил о том, что Фомальгаут b это крупный газовый гигант, по размерам превосходящий Юпитер. В то же время, телескопу Spitzer не удалось зарегистрировать инфракрасного излучения, соответствующего подобному объекту. Но проведенные астрономами дополнительные наблюдения подтвердили наличие объекта, и он был признан экзопланетой. Дошло до того, что по итогам организованного в 2015 году конкурса, МАС присвоил Фомальгаут b имя Дагон, которое можно ,было использовать в качестве ее официального обозначения.
Но, похоже, теперь имя Дагон снова станет свободным. Свежие снимки Hubble показали, что экзопланета… исчезла. Конечно, во вселенной далекой далекой галактики объяснение было бы простым — тут явно не обошлось без Звезды смерти. Но в нашем мире, конечно, все устроено несколько сложнее. Еще раз перепроверив старые данные и соотнеся их с результатами новых наблюдений астрономы пришли к выводу что, скорее всего, Hubble сфотографировал пылевое облако, образовавшееся в результате столкновения двух крупных ледяных астероидов. Это может объяснить, почему Spitzer не смог зафиксировать инфракрасное излучение. За прошедшие десять лет облако рассеялось и теперь Hubble больше не может его наблюдать.
Конечно, никому не нравятся подобные «закрытия». Но данная история еще раз наглядно демонстрирует, как работает наука: даже если у вас на руках есть красивый ответ, это не значит, что можно останавливаться. Нужно учитывать все имеющиеся факты, не отбрасывая не вписывающиеся в картину мелкие детали. И даже в этом случае нужно всегда перепроверять результаты. Ну и также это показывает, что в науке не всегда работают житейские принципы «здравого смысла». В случае с Дагоном у астрономов имелись прямые изображения объекта, что на первый взгляд является куда более весомым доказательством, чем данные «косвенных» способов вроде того же метода радиальных скоростей. Но в итоге все оказалось ровно наоборот.
https://universemagazine.com/17818/
https://www.spacetelescope.org/news/heic2006/
Журнал The Universemagazine Space Tech
Астрономы «закрыли» экзопланету в системе Фомальгаута
Астрономы объявили, что объект, ранее считавшейся экзопланетой у звезды Фомальгаут, на самом деле представляет собой пылевое облако
А вот интересно, какие темы из тех, на которые я пишу, вам наиболее интересны?
Anonymous Poll
53%
Космос (экзопланеты, звёзды, космология)
47%
Субатомная физика (коллайдеры, нейтрино, поиск частиц тёмной материи)
38%
Ликбезы по физике (учебник простыми словами)
51%
Квантовая физика (телепортация, запутанность, квантовые компьютеры)
14%
Мощные лазеры
20%
Исторические заметки
Небольшое развлечение, которое прислала мне в личку автор простенького теста о Солнечной системе. Тест на английском.
🎲 Тест «Solar System»
Can you pass this simple quiz about the solar system?
🖊 30 вопросов · ⏱ 30 сек
Can you pass this simple quiz about the solar system?
🖊 30 вопросов · ⏱ 30 сек
Одним из самых сложных объектов для исследования является состояние вещества, в котором оно находится в недрах планет. Такое состояние называют тёплым плотным веществом. Это название подчёркивает, что вещество, во-первых, сильно сжато силами давления, которые в расчёте на один атом могут превышать силы межатомного взаимодействия, а во-вторых, нагрето до высоких, но не слишком температур: вещество находится на грани ионизации, но ещё не является в полной мере плазмой как, например, вещество горячих звёзд.
Сложность исследования связана с тем, что получить такие условия в лаборатории чрезвычайно сложно, а в недра планет особо не проникнешь. Тем не менее, что-то всё-таки сделать удаётся.
Проще всего достичь нужного состояния сильно ударив чем-нибудь по образцу: подойдут мощные сфокусированные лазерные импульсы, например. Тогда вещество на долю секунды сожмётся и слегка (на несколько тысяч градусов) нагреется. Проблема такого подхода в том, что, во-первых, это всё же динамический процесс, а в недрах планет вещество находится в состоянии стационарном, и может вести себя по-другому, а во-вторых, из-за чрезвычайно короткой длительности состояния сжатия нужны изощрённые методы диагностики, чтобы измерить что-то релевантное.
Есть и другой подход: небольшой кусочек вещества размещает между сверхострыми алмазными иглами, которые помещаются под высокое давление. Из-за малой площади и высокой твёрдости алмаза так достигается давление в миллионы атмосфер. Этот метод, называемый методом алмазных наковален, набрал огромную популярность в последние годы в связи с успешной реализацией идеи многоступенчатой наковальни: когда в наковальню помещается более мелкая наковальня, внутри которой уже находится изучаемое вещество.
Но есть ещё одна проблема. При таких высоких давлениях многие вещества начинают течь: переходят в жидкое состояние. Именно это происходит в том числе и с железом, из которого по современным представлениям в основном и состоит земное ядро.
Самым надёжным способом определить плотность вещества в наковальне — рентгеновская дифракция. Рентген дифрагирует на атомах, и из-за интерференции рассеянный сигнал содержит информацию о расстояниях между атомами. А зная это расстояние и массу ядер, несложно определить и плотность. Но это легко сделать, когда вещество образует кристалл: все расстояния одинаковые, и сигнал получается ярко выраженным. А в жидкости расстояния между атомами самые разные, и сигнал размывается.
В свежей статье, опубликованной в PRL, учёным удалось решить эту проблему, применив новый более хитрый способ обработки данных рентгеновской дифракции. Это позволило впервые померить плотность железа при давлении до 1,16 млн атмосфер и температуре около 4000 °C. Оказалось, что его плотность на 7,5% выше, чем было померено сейсмологическими методами для земного ядра, что скорее всего означает, что в ядре находится существенное количество более лёгкого элемента.
Естественно предположить, что таким элементом является кислород. Только вот хорошо известно, что кислород чрезвычайно плохо растворим в железе, поэтому он осел глубже, в твёрдом внутреннем ядре, про которое известно, что оно действительно имеет более низкую плотность, чем чистый железный кристалл. А вот, что обеспечивает малую плотность жидкого ядра пока неизвестно.
Ссылка на статью: doi.org/10.1103/PhysRevLett.124.165701
Сложность исследования связана с тем, что получить такие условия в лаборатории чрезвычайно сложно, а в недра планет особо не проникнешь. Тем не менее, что-то всё-таки сделать удаётся.
Проще всего достичь нужного состояния сильно ударив чем-нибудь по образцу: подойдут мощные сфокусированные лазерные импульсы, например. Тогда вещество на долю секунды сожмётся и слегка (на несколько тысяч градусов) нагреется. Проблема такого подхода в том, что, во-первых, это всё же динамический процесс, а в недрах планет вещество находится в состоянии стационарном, и может вести себя по-другому, а во-вторых, из-за чрезвычайно короткой длительности состояния сжатия нужны изощрённые методы диагностики, чтобы измерить что-то релевантное.
Есть и другой подход: небольшой кусочек вещества размещает между сверхострыми алмазными иглами, которые помещаются под высокое давление. Из-за малой площади и высокой твёрдости алмаза так достигается давление в миллионы атмосфер. Этот метод, называемый методом алмазных наковален, набрал огромную популярность в последние годы в связи с успешной реализацией идеи многоступенчатой наковальни: когда в наковальню помещается более мелкая наковальня, внутри которой уже находится изучаемое вещество.
Но есть ещё одна проблема. При таких высоких давлениях многие вещества начинают течь: переходят в жидкое состояние. Именно это происходит в том числе и с железом, из которого по современным представлениям в основном и состоит земное ядро.
Самым надёжным способом определить плотность вещества в наковальне — рентгеновская дифракция. Рентген дифрагирует на атомах, и из-за интерференции рассеянный сигнал содержит информацию о расстояниях между атомами. А зная это расстояние и массу ядер, несложно определить и плотность. Но это легко сделать, когда вещество образует кристалл: все расстояния одинаковые, и сигнал получается ярко выраженным. А в жидкости расстояния между атомами самые разные, и сигнал размывается.
В свежей статье, опубликованной в PRL, учёным удалось решить эту проблему, применив новый более хитрый способ обработки данных рентгеновской дифракции. Это позволило впервые померить плотность железа при давлении до 1,16 млн атмосфер и температуре около 4000 °C. Оказалось, что его плотность на 7,5% выше, чем было померено сейсмологическими методами для земного ядра, что скорее всего означает, что в ядре находится существенное количество более лёгкого элемента.
Естественно предположить, что таким элементом является кислород. Только вот хорошо известно, что кислород чрезвычайно плохо растворим в железе, поэтому он осел глубже, в твёрдом внутреннем ядре, про которое известно, что оно действительно имеет более низкую плотность, чем чистый железный кристалл. А вот, что обеспечивает малую плотность жидкого ядра пока неизвестно.
Ссылка на статью: doi.org/10.1103/PhysRevLett.124.165701
Physical Review Letters
Equation of State of Liquid Iron under Extreme Conditions
The density of liquid iron is measured experimentally at conditions that match those inside Earth.
Я часто пишу о нейтринной физике, поскольку нейтрино — это по сути единственная известная частица, не укладывающаяся в полной мере в Стандартную модель элементарных частиц. И одна из главных её особенностей заключается в том, что похоже нейтрино и антинейтрино ведут себя не совсем одинаково.
Само по себе это не исключительное свойство нейтрино: среди ядерных частиц такие уже были известны, но именно у нейтрино нарушении симметрии между частицей и античастицей может быть особо сильно. Это могло бы, наконец, объяснить, как так получилось, что наш мир практически не содержит антивещества.
Сейчас в мире идёт сразу несколько крупных экспериментов по изучению этой асимметрии, и вот один из них, T2K, недавно опубликовал в Nature свежие данные: теперь вероятность, что наблюдаемое нарушение симметрии вызвано случайными факторами, ниже 1%. Этого всё ещё недостаточно, чтобы по строгим научным правилам заявлять об окончательном открытии, однако серьёзное продвижение вперёд.
Более подробно написал об этом в блоге: bit.ly/neutrino-asimmetry-t2k-2020
Само по себе это не исключительное свойство нейтрино: среди ядерных частиц такие уже были известны, но именно у нейтрино нарушении симметрии между частицей и античастицей может быть особо сильно. Это могло бы, наконец, объяснить, как так получилось, что наш мир практически не содержит антивещества.
Сейчас в мире идёт сразу несколько крупных экспериментов по изучению этой асимметрии, и вот один из них, T2K, недавно опубликовал в Nature свежие данные: теперь вероятность, что наблюдаемое нарушение симметрии вызвано случайными факторами, ниже 1%. Этого всё ещё недостаточно, чтобы по строгим научным правилам заявлять об окончательном открытии, однако серьёзное продвижение вперёд.
Более подробно написал об этом в блоге: bit.ly/neutrino-asimmetry-t2k-2020
physħ
Нарушение симметрии нейтрино и антинейтрино стало ещё заметнее
Физикам удалось увеличить точность измерений разницы в скорости осцилляций нейтрино и антинейтрино. Теперь вероятность того, что эта разница вызвана случайными факторами, ниже 1%. Асимметрия нейтрино и антинейтрино может стать ключевым фактом, объясняющим…
Написал для ТрВ-наука своё видение того, как будут развиваться сверхмощные лазеры в ближайшие 50 лет: https://trv-science.ru/2020/05/05/sverxmoshhnye-lazery-2070
This media is not supported in your browser
VIEW IN TELEGRAM
На сайте Кавказской горной обсерватории выложили результаты наблюдения за Бетельгейзе с октября 2019 года до апреля 2020 года. Наблюдения были выполнены на 2,5-метровом телескопе. Разрешение составило 0,05 секунд дуги, что позволило снять поверхность звезды.
Всего было сделано 17 снимков в разные даты, но за счёт интерполяции между ними получилась плавная анимация.
Видна неоднородность атмосферы Бетельгейзе. Потускнение скорее всего связано с пылевыми облаками.
Подробнее на сайте обсерватории: lnfm1.sai.msu.ru/kgo/mfc_Betelgeuse_ru.php
Всего было сделано 17 снимков в разные даты, но за счёт интерполяции между ними получилась плавная анимация.
Видна неоднородность атмосферы Бетельгейзе. Потускнение скорее всего связано с пылевыми облаками.
Подробнее на сайте обсерватории: lnfm1.sai.msu.ru/kgo/mfc_Betelgeuse_ru.php
Крутая и необычная статья об экситон-поляритонном бозе-конденсате в N+1: https://nplus1.ru/material/2020/05/18/polaritons
Крутая, потому что написана понятно, а необычная, потому что это, фактически, прямая речь автора открытия этого самого конденсата, Алексея Кавокина, снабженная к тому же его личными иллюстрациями, объясняющими написанное с котиками и иногда машинками.
Крутая, потому что написана понятно, а необычная, потому что это, фактически, прямая речь автора открытия этого самого конденсата, Алексея Кавокина, снабженная к тому же его личными иллюстрациями, объясняющими написанное с котиками и иногда машинками.
N + 1 — главное издание о науке, технике и технологиях
Квантовые кентавры
Объясняем на котах и автомобилях, что такое конденсат Бозе — Эйнштейна и экситон-поляритонный лазер
Смотрите, какую красоту я вам сегодня принёс. Это композитная фотография Крабовидной туманности, составленная из данных рентгеновского телескопа Chandra (белые и голубые цвета), Хаббла (фиолетовые) и инфракрасного Spitzer (розовые).
Напомню, что эта туманность — результат взрыва сверхновой, произошедшего в XI веке, и замеченного многими астрономами. В центре туманности находится остаток звезды, быстровращающаяся нейтронная звезда — пульсар. Со своих полюсов она выбрасывает джеты из вещества, ярко светящиеся в рентгеновском диапазоне и хорошо заметные на фотографии.
Напомню, что эта туманность — результат взрыва сверхновой, произошедшего в XI веке, и замеченного многими астрономами. В центре туманности находится остаток звезды, быстровращающаяся нейтронная звезда — пульсар. Со своих полюсов она выбрасывает джеты из вещества, ярко светящиеся в рентгеновском диапазоне и хорошо заметные на фотографии.
Присоединяюсь к рекомендации, хотя сам этой книги пока в руках не держал. Но автора Виталия Егорова знаю давно, и не сомневаюсь, что книга получилась более чем достойной.
Forwarded from astronomy (Igor Tirsky)
Если вы хотите почитать книгу про космос, то рекомендую https://www.alpinabook.ru/catalog/book-634507/ "Люди на Луне", и не потому, что мне удалось немного поработать с материалом книги до её выхода, а потому, что это одна из самых интересных книг про освоение космоса, а еще в ней нашлось место астрономии. Поэтому, смело покупайте - это не реклама, а моя личная рекомендация, без просьбы автора и вообще).
В книге вы найдете ответы на такие вопросы как: "Можно ли в космосе уберечься от вредного космического излучения?" "Видно ли американский флаг с Земли и с орбиты с помощью космических и наземных телескопов?" и многим другим. Глава про "радиацию" достойно отдельной книги), а глава про фотографии Луны китайскими, индийскими и другими станциями - тянет на научную работу!
В книге вы найдете ответы на такие вопросы как: "Можно ли в космосе уберечься от вредного космического излучения?" "Видно ли американский флаг с Земли и с орбиты с помощью космических и наземных телескопов?" и многим другим. Глава про "радиацию" достойно отдельной книги), а глава про фотографии Луны китайскими, индийскими и другими станциями - тянет на научную работу!
alpinabook.ru
Люди на Луне: Главные ответы — купить книгу Виталия Егорова на сайте alpinabook.ru
Люди на Луне: Главные ответы, Автор Виталий Егоров в форматах fb2, txt, epub, pdf, mp3, аудио книга. Гарантируем низкие цены, доставка курьером и в пункты выдачи от 99 руб. Издательство Альпина Паблишер
Я тут как-то упустил, а между тем в астрономии произошло весьма примечательное событие. Была открыта чёрная дыра, располагающаяся всего в тысяче световых лет от Земли — самая близкая из известных: bit.ly/black-hole-next-door
Примечательность открытия заключается не только в её близости к нам, но и в том, что большинство открытых чёрных дыр — в нашей Галактике их известно пара десятков — активно взаимодействуют со своим окружением, благодаря чему ярко светятся в рентгене. Эта чёрная дыра не светится.
А открыть её удалось, потому что она входит в состав тройной системы и две звезды этой системы вполне наблюдаемы — причём даже без телескопа! Однако только современными телескопами, оснащёнными спектрографами, удалось определить, что одна из двух видимых звёзд вращается вокруг чего-то массивного — массой больше 4 Солнц — и невидимого. И делает это за 40 дней. Ничем другим, кроме чёрной дыры этот объект быть не может.
Вообще-то, по оценкам, в нашей Галактике должны существовать сотни миллионов чёрных дыр. Образование чёрной дыры это типичный конец звёзд массой в десятки Солнц, взрывающихся после сжигания водорода в виде сверхновых. Так что, не исключено, что нас ждёт ещё множество подобных открытий. У астрономов даже уже есть подходящий кандидат на следующее открытие.
Примечательность открытия заключается не только в её близости к нам, но и в том, что большинство открытых чёрных дыр — в нашей Галактике их известно пара десятков — активно взаимодействуют со своим окружением, благодаря чему ярко светятся в рентгене. Эта чёрная дыра не светится.
А открыть её удалось, потому что она входит в состав тройной системы и две звезды этой системы вполне наблюдаемы — причём даже без телескопа! Однако только современными телескопами, оснащёнными спектрографами, удалось определить, что одна из двух видимых звёзд вращается вокруг чего-то массивного — массой больше 4 Солнц — и невидимого. И делает это за 40 дней. Ничем другим, кроме чёрной дыры этот объект быть не может.
Вообще-то, по оценкам, в нашей Галактике должны существовать сотни миллионов чёрных дыр. Образование чёрной дыры это типичный конец звёзд массой в десятки Солнц, взрывающихся после сжигания водорода в виде сверхновых. Так что, не исключено, что нас ждёт ещё множество подобных открытий. У астрономов даже уже есть подходящий кандидат на следующее открытие.
physħ
Астрономы обнаружили чёрную дыру всего в тысяче световых лет от Земли
Эта чёрная дыра ближе к Солнечной системе, чем какая бы то ни была другая из известных на сегодняшний день. Обнаружить её удалось благодаря тому, что она входит в тройную систему звёзд, так что доказать существование невидимого объекта в ней удалось, отслеживая…