onlinebme
تایم لپس از آناتومی قلب و گردش خون جلسه اول دوره پردازش سیگنال ECG @Onlinebme
✅الگوریتم Pan-Tompkins در تشخیص پیکهای R سیگنال ECG
محمد نوری زاده چرلو
14 خرداد 1403
در پردازش سیگنال ECG اولین مرحله آشکارسازی پیکهای R است. از طریق این موقعیت پیکهای R کمپلکس QRS، سیگنال RRI و HR استخراج میشود. آشکارسازی دقیق موقعیت پیکهای R برای تحلیل های بعدی بسیار با اهمیت است.
💡الگوریتم Pan-Tompkins یکی از معروفترین روشها در تشخیص پیکهای R در سیگنال قلبی هست. این الگوریتم یک سری فیلتر روی سیگنال ECG اعمال میکند و نواحی مرتبط با QRS را برجسته تر میکند و در نهایت پیکهای R را تشخیص میدهد. در این پست میخواهیم با مراحل این روش توسط یک مثال عملی آشنا شویم.
⭕️جزئیات بیشتر 👇
🔘https://onlinebme.com/pan-tompkins-algorithm-for-qrs-detection/
📌فایل PDF
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@Onlinebme
محمد نوری زاده چرلو
14 خرداد 1403
در پردازش سیگنال ECG اولین مرحله آشکارسازی پیکهای R است. از طریق این موقعیت پیکهای R کمپلکس QRS، سیگنال RRI و HR استخراج میشود. آشکارسازی دقیق موقعیت پیکهای R برای تحلیل های بعدی بسیار با اهمیت است.
💡الگوریتم Pan-Tompkins یکی از معروفترین روشها در تشخیص پیکهای R در سیگنال قلبی هست. این الگوریتم یک سری فیلتر روی سیگنال ECG اعمال میکند و نواحی مرتبط با QRS را برجسته تر میکند و در نهایت پیکهای R را تشخیص میدهد. در این پست میخواهیم با مراحل این روش توسط یک مثال عملی آشنا شویم.
⭕️جزئیات بیشتر 👇
🔘https://onlinebme.com/pan-tompkins-algorithm-for-qrs-detection/
📌فایل PDF
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@Onlinebme
onlinebme
ECG-Processing#Problems03.pdf
ECG-Processing#Problems04.pdf
872.3 KB
✅ 《دوره پردازش سیگنال ECG》
🔷 فصل 2: پیش پردازش
🔘 تمرینات سری چهارم
▪️ تشخیص پیکهای R، استخراج RRI, QRS
@Onlinebme
🔷 فصل 2: پیش پردازش
🔘 تمرینات سری چهارم
▪️ تشخیص پیکهای R، استخراج RRI, QRS
@Onlinebme
Forwarded from onlinebme
⬛️◼️◾️ پکیجهای آموزشی Onlinebme ◾️◼️⬛️
🔆 اولین گروه آموزشیِ تخصصی و پروژه محور 🔆
〰〰〰〰〰 برنامهنویسی متلب 〰〰〰〰〰
🔲 اصول برنامهنویسی در متلب (رایگان)
▪️مدت دوره: 11 ساعت
🔘 Link
〰〰〰〰〰 برنامهنویسی پایتون 〰〰〰〰〰
⚪️ فصل 1: اصول برنامهنویسی پایتون
◽️مدت دوره: 32 ساعت
🔘 Link
⚪️ فصل 2-3: کتابخانه NumPy و Matplotlib
◽️مدت دوره: 18 ساعت
🔘 Link
⚪️ فصل 4: برنامه نویسی شیء گرا در پایتون
◽️مدت دوره: 14 ساعت 30 دقیقه
🔘 Link
〰〰〰 شناسایی الگو و یادگیری ماشین 〰〰〰
⚠️ 140 ساعت ویدیوی آموزشی
🔹آموزش تئوری و مباحث ریاضیاتی طبق مراجع معتبر
🔹پیادهسازی مرحله به مرحله الگوریتمها
🔹انجام پروژه های عملی و تخصصی
🔹پیاده سازی گام به گام مقالات تخصصی
⚪️فصل 1 تا 4: از بیزین تا SVM
◽️مدت دوره: 75 ساعت
🔘 Link
⚪️فصل 5: یادگیری جمعی
◽️مدت دوره: 18 ساعت
🔘 Link
⚪️فصل 6: الگوریتمهای کاهش بعد
◽️مدت دوره: 11 ساعت
🔘 Link
⚪️فصل 7: الگوریتمهای انتخاب ویژگی
◽️مدت دوره: 16 ساعت
🔘 Link
⚪️فصل 8: الگوریتمهای خوشهبندی
◽️مدت دوره: 13 ساعت
🔘 Link
〰〰〰〰〰 شبکههای عصبی 〰〰〰〰〰
⚪️ پیاده سازی گام به گام شبکه های عصبی
◽️مدت دوره: 25 ساعت
🔘 Link
⚪️ دوره پروژه محور شبکه عصبی کانولوشنی (CNN)
◽️مدت دوره: 11 ساعت
🔘 Link
⚪️ دوره پروژه محور شبکه عصبی بازگشتی (RNN)
◽️مدت دوره: 13 ساعت
🔘 Link
⚪️دوره پروژه محور کاربرد شبکههای عمیق در بینایی ماشین
◽️مدت دوره: 16 ساعت
🔘 Link
⚪️ دوره پیادهسازی شبکههای عصبی با PyTorch
◽️مدت دوره: 70 ساعت
🔘 Link
〰〰〰〰 پردازش سیگنال مغزی 〰〰〰〰
⚪️ دوره جامع پردازش سیگنال مغزی(EEG)
◽️مدت دوره: 50 ساعت
🔘 Link
⚪️ واسط مغز-کامپیوتر مبتنی بر P300
◽️مدت دوره: 28 ساعت
🔘 Link
⚪️ واسط مغز-کامپیوتر مبتنی بر SSVEP
◽️ مدت دوره: 33 ساعت
🔘 Link
⚪️ واسط مغز-کامپیوتر مبتنی بر تصور حرکتی
◽️مدت دوره: 21 ساعت
🔘 Link
⚪️ پیادهسازی مقاله CSSP (BCI مبتنی بر MI)
◽️مدت دوره: 7 ساعت و 30 دقیقه
🔘 Link
⚪️پیادهسازی مقاله RCSP (BCI مبتنی بر MI)
◽️مدت دوره: 5 ساعت
🔘 Link
⚪️دوره تبدیل فوریه زمان کوتاه در پردازش سیگنال مغزی
◽️مدت دوره: 8 ساعت
🔘 Link
⚪️دوره پردازش سیگنال مغزی با کتابخانه MNE پایتون
◽️مدت دوره: 33 ساعت
🔘 Link
〰〰〰〰 دوره جامع پردازش تصویر 〰〰〰〰
⚪️فصل 1: آستانه گذاری تصویر، تبدیلات شدت روشنایی و هندسی
◽️مدت دوره: 30 ساعت
🔘 Link
⚪️فصل 2: پردازش هیستوگرام تصویر
◽️مدت دوره: 6 ساعت و 30 دقیقه
🔘 Link
⚪️فصل 3: فیلترهای مکانی
◽️مدت دوره: 15 ساعت و 30 دقیقه
🔘 Link
⚪️فصل 4: عملیات مورفورلوژی
◽️مدت دوره: 6 ساعت
🔘 Link
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
🔆 اولین گروه آموزشیِ تخصصی و پروژه محور 🔆
〰〰〰〰〰 برنامهنویسی متلب 〰〰〰〰〰
🔲 اصول برنامهنویسی در متلب (رایگان)
▪️مدت دوره: 11 ساعت
🔘 Link
〰〰〰〰〰 برنامهنویسی پایتون 〰〰〰〰〰
⚪️ فصل 1: اصول برنامهنویسی پایتون
◽️مدت دوره: 32 ساعت
🔘 Link
⚪️ فصل 2-3: کتابخانه NumPy و Matplotlib
◽️مدت دوره: 18 ساعت
🔘 Link
⚪️ فصل 4: برنامه نویسی شیء گرا در پایتون
◽️مدت دوره: 14 ساعت 30 دقیقه
🔘 Link
〰〰〰 شناسایی الگو و یادگیری ماشین 〰〰〰
⚠️ 140 ساعت ویدیوی آموزشی
🔹آموزش تئوری و مباحث ریاضیاتی طبق مراجع معتبر
🔹پیادهسازی مرحله به مرحله الگوریتمها
🔹انجام پروژه های عملی و تخصصی
🔹پیاده سازی گام به گام مقالات تخصصی
⚪️فصل 1 تا 4: از بیزین تا SVM
◽️مدت دوره: 75 ساعت
🔘 Link
⚪️فصل 5: یادگیری جمعی
◽️مدت دوره: 18 ساعت
🔘 Link
⚪️فصل 6: الگوریتمهای کاهش بعد
◽️مدت دوره: 11 ساعت
🔘 Link
⚪️فصل 7: الگوریتمهای انتخاب ویژگی
◽️مدت دوره: 16 ساعت
🔘 Link
⚪️فصل 8: الگوریتمهای خوشهبندی
◽️مدت دوره: 13 ساعت
🔘 Link
〰〰〰〰〰 شبکههای عصبی 〰〰〰〰〰
⚪️ پیاده سازی گام به گام شبکه های عصبی
◽️مدت دوره: 25 ساعت
🔘 Link
⚪️ دوره پروژه محور شبکه عصبی کانولوشنی (CNN)
◽️مدت دوره: 11 ساعت
🔘 Link
⚪️ دوره پروژه محور شبکه عصبی بازگشتی (RNN)
◽️مدت دوره: 13 ساعت
🔘 Link
⚪️دوره پروژه محور کاربرد شبکههای عمیق در بینایی ماشین
◽️مدت دوره: 16 ساعت
🔘 Link
⚪️ دوره پیادهسازی شبکههای عصبی با PyTorch
◽️مدت دوره: 70 ساعت
🔘 Link
〰〰〰〰 پردازش سیگنال مغزی 〰〰〰〰
⚪️ دوره جامع پردازش سیگنال مغزی(EEG)
◽️مدت دوره: 50 ساعت
🔘 Link
⚪️ واسط مغز-کامپیوتر مبتنی بر P300
◽️مدت دوره: 28 ساعت
🔘 Link
⚪️ واسط مغز-کامپیوتر مبتنی بر SSVEP
◽️ مدت دوره: 33 ساعت
🔘 Link
⚪️ واسط مغز-کامپیوتر مبتنی بر تصور حرکتی
◽️مدت دوره: 21 ساعت
🔘 Link
⚪️ پیادهسازی مقاله CSSP (BCI مبتنی بر MI)
◽️مدت دوره: 7 ساعت و 30 دقیقه
🔘 Link
⚪️پیادهسازی مقاله RCSP (BCI مبتنی بر MI)
◽️مدت دوره: 5 ساعت
🔘 Link
⚪️دوره تبدیل فوریه زمان کوتاه در پردازش سیگنال مغزی
◽️مدت دوره: 8 ساعت
🔘 Link
⚪️دوره پردازش سیگنال مغزی با کتابخانه MNE پایتون
◽️مدت دوره: 33 ساعت
🔘 Link
〰〰〰〰 دوره جامع پردازش تصویر 〰〰〰〰
⚪️فصل 1: آستانه گذاری تصویر، تبدیلات شدت روشنایی و هندسی
◽️مدت دوره: 30 ساعت
🔘 Link
⚪️فصل 2: پردازش هیستوگرام تصویر
◽️مدت دوره: 6 ساعت و 30 دقیقه
🔘 Link
⚪️فصل 3: فیلترهای مکانی
◽️مدت دوره: 15 ساعت و 30 دقیقه
🔘 Link
⚪️فصل 4: عملیات مورفورلوژی
◽️مدت دوره: 6 ساعت
🔘 Link
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
onlinebme
ECG-Processing#Problems04.pdf
ECG-Processing#Problems05.pdf
733.7 KB
✅ 《دوره پردازش سیگنال ECG》
🔷 فصل 3: استخراج ویژگی
🔘 تمرینات سری پنجم
▪️ Morphological and Temporal Features
@Onlinebme
🔷 فصل 3: استخراج ویژگی
🔘 تمرینات سری پنجم
▪️ Morphological and Temporal Features
@Onlinebme
✅یادگیری بازنمایی یا Representation Learning چیست؟
هما کاشفی امیری
24 خرداد 1403
✍️یادگیری بازنمایی روشی برای آموزش یک مدل یادگیری ماشین است تا بتواند مفیدترین بازنمایی دادهی ورودی را یاد بگیرد. این بازنماییها که اغلب به عنوان ویژگی شناخته میشوند، حالتهای داخلی مدل هستند که میتوانند دادههای ورودی را به خوبی خلاصه کنند و از این طریق به الگوریتم کمک میکنند تا الگوهای کلی دادهها را بهتر درک کند.
🔘 جزئیات بیشتر 👇
https://onlinebme.com/representation-learning/
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@Onlinebme
هما کاشفی امیری
24 خرداد 1403
✍️یادگیری بازنمایی روشی برای آموزش یک مدل یادگیری ماشین است تا بتواند مفیدترین بازنمایی دادهی ورودی را یاد بگیرد. این بازنماییها که اغلب به عنوان ویژگی شناخته میشوند، حالتهای داخلی مدل هستند که میتوانند دادههای ورودی را به خوبی خلاصه کنند و از این طریق به الگوریتم کمک میکنند تا الگوهای کلی دادهها را بهتر درک کند.
🔘 جزئیات بیشتر 👇
https://onlinebme.com/representation-learning/
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@Onlinebme
onlinebme
✅الگوریتم Pan-Tompkins در تشخیص پیکهای R سیگنال ECG محمد نوری زاده چرلو 14 خرداد 1403 در پردازش سیگنال ECG اولین مرحله آشکارسازی پیکهای R است. از طریق این موقعیت پیکهای R کمپلکس QRS، سیگنال RRI و HR استخراج میشود. آشکارسازی دقیق موقعیت پیکهای R برای تحلیل…
✅ محاسبه چگالی طیفی توان طبق روش Welch
👨💻محمد نوری زاده چرلو
🗓21 خرداد 1403
🔺️ چگالی طیفی توان (Power Spectral Density) توزیع توان در بازههای فرکانسی را مشخص میکند که میتوان با کمک تبدیل فوریه آنرا محاسبه کنیم. از آنجا که PSD اطلاعات زیادی در مورد پدیدهای که بررسی میکنیم ارائه میدهد، استفاده از آن در پردازش سیگنالهای حیاتی برای تحلیل و استخراج ویژگی بسیار رایج است.
در این پست موارد زیر را بررسی میکنیم:
▪️ آشنایی با مفهوم PSD
▪️ نحوه محاسبه PSD طبق رویکرد Welch
▪️ محاسبه توان طبق قاعدهی ذوزنقهای
🔘 جزئیات بیشتر 👇
https://onlinebme.com/power-spectral-density-calculation-using-welch-method/
📌 فایل PDF
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@Onlinebme
👨💻محمد نوری زاده چرلو
🗓21 خرداد 1403
🔺️ چگالی طیفی توان (Power Spectral Density) توزیع توان در بازههای فرکانسی را مشخص میکند که میتوان با کمک تبدیل فوریه آنرا محاسبه کنیم. از آنجا که PSD اطلاعات زیادی در مورد پدیدهای که بررسی میکنیم ارائه میدهد، استفاده از آن در پردازش سیگنالهای حیاتی برای تحلیل و استخراج ویژگی بسیار رایج است.
در این پست موارد زیر را بررسی میکنیم:
▪️ آشنایی با مفهوم PSD
▪️ نحوه محاسبه PSD طبق رویکرد Welch
▪️ محاسبه توان طبق قاعدهی ذوزنقهای
🔘 جزئیات بیشتر 👇
https://onlinebme.com/power-spectral-density-calculation-using-welch-method/
📌 فایل PDF
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@Onlinebme
onlinebme
ECG-Processing#Problems05.pdf
ECG-Processing#Problems06.pdf
562.2 KB
✅ 《دوره پردازش سیگنال ECG》
🔷 فصل 3: استخراج ویژگی
🔘 تمرینات سری ششم
▪️ Feature extraction from RRI
@Onlinebme
🔷 فصل 3: استخراج ویژگی
🔘 تمرینات سری ششم
▪️ Feature extraction from RRI
@Onlinebme
✅مفهوم Early Stopping در یادگیری ماشین چیست؟
هما کاشفی امیری
۳۱ خرداد ۱۴۰۳
✍️زمانی که مدلهای یادگیری ماشین را آموزش میدهیم ممکن است این مدلها روی دادهی آموزش بیش از حد آموزش ببینند و یا به اصطلاح دادهی آموزشی را حفظ کنند و بیش برازش (Overfitting) رخ دهد. اغلب در چنین مواقعی میبینیم که خطای مجموعه دادهی آموزش به طور پیوسته در طول زمان کاهش پیدا میکند اما خطای مجموعه دادهی Validation دوباره افزایش مییابد. رویکرد Early Stopping برای جلوگیری از این مسئله پیشنهاد شده است.
🔘 جزئیات بیشتر 👇
https://onlinebme.com/what-is-early-stopping-in-machine-learning/
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@Onlinebme
هما کاشفی امیری
۳۱ خرداد ۱۴۰۳
✍️زمانی که مدلهای یادگیری ماشین را آموزش میدهیم ممکن است این مدلها روی دادهی آموزش بیش از حد آموزش ببینند و یا به اصطلاح دادهی آموزشی را حفظ کنند و بیش برازش (Overfitting) رخ دهد. اغلب در چنین مواقعی میبینیم که خطای مجموعه دادهی آموزش به طور پیوسته در طول زمان کاهش پیدا میکند اما خطای مجموعه دادهی Validation دوباره افزایش مییابد. رویکرد Early Stopping برای جلوگیری از این مسئله پیشنهاد شده است.
🔘 جزئیات بیشتر 👇
https://onlinebme.com/what-is-early-stopping-in-machine-learning/
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@Onlinebme
از آنجاییکه انتخاب دیتاست یا پایگاه داده نقش بسیار مهمی در پژوهش های ما دارد، لازم است با دیتاست هایی که در مقالات اخیر استفاده می شود آشنا باشیم.
◽️معرفی دیتاست EEG تشنج صرعی
CHB-MIT
🟣یکی از پایگاه داده یا دیتاستهای مهم EEG صرع تشنجی که در مقالات اخیر از آن استفاده شده است CHB-MIT است که در این مقاله به بررسی آن میپردازیم.
اطلاعات بیشتر👇
https://onlinebme.com/chb-mit-database/
#معرفی_پایگاه_داده
#EEG
#MNE
#dataset
#database
@onlinebme
◽️معرفی دیتاست EEG تشنج صرعی
CHB-MIT
🟣یکی از پایگاه داده یا دیتاستهای مهم EEG صرع تشنجی که در مقالات اخیر از آن استفاده شده است CHB-MIT است که در این مقاله به بررسی آن میپردازیم.
اطلاعات بیشتر👇
https://onlinebme.com/chb-mit-database/
#معرفی_پایگاه_داده
#EEG
#MNE
#dataset
#database
@onlinebme
✅مفهوم آموزش خصمانه (Adversarial Training)
هما کاشفی امیری
7تیر 1403
✍️در بسیاری از مواقع شبکههای عصبی که روی دیتاستهای تست i.i.d ارزیابی میشوند، به عملکردی نزدیک به عملکرد انسانی دست پیدا میکنند. طبیعی است که تعجب کنیم آیا واقعاً این مدلها، درکی در سطح انسان از تسکها کسب کردهاند؟ به منظور بررسی میزان درک یک شبکه از تسک موردنظر، میتوانیم نمونه دادههایی را جستجو کنیم که مدل آنها را به درستی کلاسبندی نمیکند. این بار سعی میکنیم مدل را به طور خصمانهتری آموزش دهیم.
🔘 جزئیات بیشتر 👇
https://onlinebme.com/adversarial-training/
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@Onlinebme
هما کاشفی امیری
7تیر 1403
✍️در بسیاری از مواقع شبکههای عصبی که روی دیتاستهای تست i.i.d ارزیابی میشوند، به عملکردی نزدیک به عملکرد انسانی دست پیدا میکنند. طبیعی است که تعجب کنیم آیا واقعاً این مدلها، درکی در سطح انسان از تسکها کسب کردهاند؟ به منظور بررسی میزان درک یک شبکه از تسک موردنظر، میتوانیم نمونه دادههایی را جستجو کنیم که مدل آنها را به درستی کلاسبندی نمیکند. این بار سعی میکنیم مدل را به طور خصمانهتری آموزش دهیم.
🔘 جزئیات بیشتر 👇
https://onlinebme.com/adversarial-training/
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@Onlinebme
◽️معرفی دیتاست های بینایی ماشین
🟣در این مقاله، لیستی جامع از دیتاستهای با کیفیت بینایی ماشین را ارائه کردهایم که میتوانید به صورت رایگان به آنها دسترسی داشته باشید.
اطلاعات بیشتر👇
https://onlinebme.com/open-source-datasets-for-machine-vision/
#معرفی_پایگاه_داده
#image_classification
#image_segmentation
#Object_detection
#face_detection
#dataset
#database
@onlinebme
🟣در این مقاله، لیستی جامع از دیتاستهای با کیفیت بینایی ماشین را ارائه کردهایم که میتوانید به صورت رایگان به آنها دسترسی داشته باشید.
اطلاعات بیشتر👇
https://onlinebme.com/open-source-datasets-for-machine-vision/
#معرفی_پایگاه_داده
#image_classification
#image_segmentation
#Object_detection
#face_detection
#dataset
#database
@onlinebme
onlinebme
✅ مطالعه جدید ما در زمینه BCI مبتنی بر P300 Tittle: A novel multiclass-based framework for P300 detection in BCI matrix speller: temporal EEG patterns of non-target trials vary based on their position to previous target stimuli. Authors: Mohammad Norizadeh…
Please open Telegram to view this post
VIEW IN TELEGRAM
onlinebme
ECG-Processing#Problems06.pdf
ECG-Processing#Project01.pdf
900 KB
✅ 《دوره پردازش سیگنال ECG》
🔷 فصل 4: طبقهبندی
🔘 پروژه سری اول
▪️ classification and validation
@Onlinebme
🔷 فصل 4: طبقهبندی
🔘 پروژه سری اول
▪️ classification and validation
@Onlinebme
Google Shadow Art🐦🐧🐤🐻🐹🐱
بازی هوش مصنوعی جالبی است که با استفاده از آن می توانید با دست خود سایه حیوانات را بسازید و هوش مصنوعی باقی آن را تکمیل می کند.😊
اول باید حیوانی که می خواهید ایجاد کنید را انتخاب کنید سپس سایه آن را با دستانتان ایجاد کنید.
لینک بازی:
https://shadowart.withgoogle.com/?lang=en-us#
@Onlinebme
بازی هوش مصنوعی جالبی است که با استفاده از آن می توانید با دست خود سایه حیوانات را بسازید و هوش مصنوعی باقی آن را تکمیل می کند.😊
اول باید حیوانی که می خواهید ایجاد کنید را انتخاب کنید سپس سایه آن را با دستانتان ایجاد کنید.
لینک بازی:
https://shadowart.withgoogle.com/?lang=en-us#
@Onlinebme
onlinebme
✅ فرق بین convolution و cross-correlation ✍اگه پردازش تصویر یا شبکه های عمیق کار کرده باشید حتما دو عبارت کانولوشن (convolution) و میان-همبستگی (cross-correlation) را شنیده اید. هر دو عملیات از لحاظ ریاضیاتی خیلی شبیه بهم هستند. اگه بخوایم یه تعریف کلی…
This media is not supported in your browser
VIEW IN TELEGRAM
Forwarded from onlinebme
⬛️◼️◾️ پکیجهای آموزشی Onlinebme ◾️◼️⬛️
🔆 اولین گروه آموزشیِ تخصصی و پروژه محور 🔆
〰〰〰〰〰 برنامهنویسی متلب 〰〰〰〰〰
🔲 اصول برنامهنویسی در متلب (رایگان)
▪️مدت دوره: 11 ساعت
🔘 Link
〰〰〰〰〰 برنامهنویسی پایتون 〰〰〰〰〰
⚪️ فصل 1: اصول برنامهنویسی پایتون
◽️مدت دوره: 32 ساعت
🔘 Link
⚪️ فصل 2-3: کتابخانه NumPy و Matplotlib
◽️مدت دوره: 18 ساعت
🔘 Link
⚪️ فصل 4: برنامه نویسی شیء گرا در پایتون
◽️مدت دوره: 14 ساعت 30 دقیقه
🔘 Link
〰〰〰 شناسایی الگو و یادگیری ماشین 〰〰〰
⚠️ 140 ساعت ویدیوی آموزشی
🔹آموزش تئوری و مباحث ریاضیاتی طبق مراجع معتبر
🔹پیادهسازی مرحله به مرحله الگوریتمها
🔹انجام پروژه های عملی و تخصصی
🔹پیاده سازی گام به گام مقالات تخصصی
⚪️فصل 1 تا 4: از بیزین تا SVM
◽️مدت دوره: 75 ساعت
🔘 Link
⚪️فصل 5: یادگیری جمعی
◽️مدت دوره: 18 ساعت
🔘 Link
⚪️فصل 6: الگوریتمهای کاهش بعد
◽️مدت دوره: 11 ساعت
🔘 Link
⚪️فصل 7: الگوریتمهای انتخاب ویژگی
◽️مدت دوره: 16 ساعت
🔘 Link
⚪️فصل 8: الگوریتمهای خوشهبندی
◽️مدت دوره: 13 ساعت
🔘 Link
〰〰〰〰〰 شبکههای عصبی 〰〰〰〰〰
⚪️ پیاده سازی گام به گام شبکه های عصبی
◽️مدت دوره: 25 ساعت
🔘 Link
⚪️ دوره پروژه محور شبکه عصبی کانولوشنی (CNN)
◽️مدت دوره: 11 ساعت
🔘 Link
⚪️ دوره پروژه محور شبکه عصبی بازگشتی (RNN)
◽️مدت دوره: 13 ساعت
🔘 Link
⚪️دوره پروژه محور کاربرد شبکههای عمیق در بینایی ماشین
◽️مدت دوره: 16 ساعت
🔘 Link
⚪️ دوره پیادهسازی شبکههای عصبی با PyTorch
◽️مدت دوره: 70 ساعت
🔘 Link
〰〰〰〰 پردازش سیگنال مغزی 〰〰〰〰
⚪️ دوره جامع پردازش سیگنال مغزی(EEG)
◽️مدت دوره: 50 ساعت
🔘 Link
⚪️ واسط مغز-کامپیوتر مبتنی بر P300
◽️مدت دوره: 28 ساعت
🔘 Link
⚪️ واسط مغز-کامپیوتر مبتنی بر SSVEP
◽️ مدت دوره: 33 ساعت
🔘 Link
⚪️ واسط مغز-کامپیوتر مبتنی بر تصور حرکتی
◽️مدت دوره: 21 ساعت
🔘 Link
⚪️ پیادهسازی مقاله CSSP (BCI مبتنی بر MI)
◽️مدت دوره: 7 ساعت و 30 دقیقه
🔘 Link
⚪️پیادهسازی مقاله RCSP (BCI مبتنی بر MI)
◽️مدت دوره: 5 ساعت
🔘 Link
⚪️دوره تبدیل فوریه زمان کوتاه در پردازش سیگنال مغزی
◽️مدت دوره: 8 ساعت
🔘 Link
⚪️دوره پردازش سیگنال مغزی با کتابخانه MNE پایتون
◽️مدت دوره: 33 ساعت
🔘 Link
〰〰〰〰 دوره جامع پردازش تصویر 〰〰〰〰
⚪️فصل 1: آستانه گذاری تصویر، تبدیلات شدت روشنایی و هندسی
◽️مدت دوره: 30 ساعت
🔘 Link
⚪️فصل 2: پردازش هیستوگرام تصویر
◽️مدت دوره: 6 ساعت و 30 دقیقه
🔘 Link
⚪️فصل 3: فیلترهای مکانی
◽️مدت دوره: 15 ساعت و 30 دقیقه
🔘 Link
⚪️فصل 4: عملیات مورفورلوژی
◽️مدت دوره: 6 ساعت
🔘 Link
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
🔆 اولین گروه آموزشیِ تخصصی و پروژه محور 🔆
〰〰〰〰〰 برنامهنویسی متلب 〰〰〰〰〰
🔲 اصول برنامهنویسی در متلب (رایگان)
▪️مدت دوره: 11 ساعت
🔘 Link
〰〰〰〰〰 برنامهنویسی پایتون 〰〰〰〰〰
⚪️ فصل 1: اصول برنامهنویسی پایتون
◽️مدت دوره: 32 ساعت
🔘 Link
⚪️ فصل 2-3: کتابخانه NumPy و Matplotlib
◽️مدت دوره: 18 ساعت
🔘 Link
⚪️ فصل 4: برنامه نویسی شیء گرا در پایتون
◽️مدت دوره: 14 ساعت 30 دقیقه
🔘 Link
〰〰〰 شناسایی الگو و یادگیری ماشین 〰〰〰
⚠️ 140 ساعت ویدیوی آموزشی
🔹آموزش تئوری و مباحث ریاضیاتی طبق مراجع معتبر
🔹پیادهسازی مرحله به مرحله الگوریتمها
🔹انجام پروژه های عملی و تخصصی
🔹پیاده سازی گام به گام مقالات تخصصی
⚪️فصل 1 تا 4: از بیزین تا SVM
◽️مدت دوره: 75 ساعت
🔘 Link
⚪️فصل 5: یادگیری جمعی
◽️مدت دوره: 18 ساعت
🔘 Link
⚪️فصل 6: الگوریتمهای کاهش بعد
◽️مدت دوره: 11 ساعت
🔘 Link
⚪️فصل 7: الگوریتمهای انتخاب ویژگی
◽️مدت دوره: 16 ساعت
🔘 Link
⚪️فصل 8: الگوریتمهای خوشهبندی
◽️مدت دوره: 13 ساعت
🔘 Link
〰〰〰〰〰 شبکههای عصبی 〰〰〰〰〰
⚪️ پیاده سازی گام به گام شبکه های عصبی
◽️مدت دوره: 25 ساعت
🔘 Link
⚪️ دوره پروژه محور شبکه عصبی کانولوشنی (CNN)
◽️مدت دوره: 11 ساعت
🔘 Link
⚪️ دوره پروژه محور شبکه عصبی بازگشتی (RNN)
◽️مدت دوره: 13 ساعت
🔘 Link
⚪️دوره پروژه محور کاربرد شبکههای عمیق در بینایی ماشین
◽️مدت دوره: 16 ساعت
🔘 Link
⚪️ دوره پیادهسازی شبکههای عصبی با PyTorch
◽️مدت دوره: 70 ساعت
🔘 Link
〰〰〰〰 پردازش سیگنال مغزی 〰〰〰〰
⚪️ دوره جامع پردازش سیگنال مغزی(EEG)
◽️مدت دوره: 50 ساعت
🔘 Link
⚪️ واسط مغز-کامپیوتر مبتنی بر P300
◽️مدت دوره: 28 ساعت
🔘 Link
⚪️ واسط مغز-کامپیوتر مبتنی بر SSVEP
◽️ مدت دوره: 33 ساعت
🔘 Link
⚪️ واسط مغز-کامپیوتر مبتنی بر تصور حرکتی
◽️مدت دوره: 21 ساعت
🔘 Link
⚪️ پیادهسازی مقاله CSSP (BCI مبتنی بر MI)
◽️مدت دوره: 7 ساعت و 30 دقیقه
🔘 Link
⚪️پیادهسازی مقاله RCSP (BCI مبتنی بر MI)
◽️مدت دوره: 5 ساعت
🔘 Link
⚪️دوره تبدیل فوریه زمان کوتاه در پردازش سیگنال مغزی
◽️مدت دوره: 8 ساعت
🔘 Link
⚪️دوره پردازش سیگنال مغزی با کتابخانه MNE پایتون
◽️مدت دوره: 33 ساعت
🔘 Link
〰〰〰〰 دوره جامع پردازش تصویر 〰〰〰〰
⚪️فصل 1: آستانه گذاری تصویر، تبدیلات شدت روشنایی و هندسی
◽️مدت دوره: 30 ساعت
🔘 Link
⚪️فصل 2: پردازش هیستوگرام تصویر
◽️مدت دوره: 6 ساعت و 30 دقیقه
🔘 Link
⚪️فصل 3: فیلترهای مکانی
◽️مدت دوره: 15 ساعت و 30 دقیقه
🔘 Link
⚪️فصل 4: عملیات مورفورلوژی
◽️مدت دوره: 6 ساعت
🔘 Link
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
سلام
دوره《پردازش سیگنال ECG》تموم شد
پکیج دوره هفته آینده بعد از ادیت نهایی در وبسایت قرار میگیرد.
@Onlinebme
دوره《پردازش سیگنال ECG》تموم شد
پکیج دوره هفته آینده بعد از ادیت نهایی در وبسایت قرار میگیرد.
@Onlinebme