Forwarded from onlinebme
⬛️◼️◾️ پکیجهای آموزشی Onlinebme ◾️◼️⬛️
🔆 اولین گروه آموزشیِ تخصصی و پروژه محور 🔆
〰〰〰〰〰 برنامهنویسی متلب 〰〰〰〰〰
🔲 اصول برنامهنویسی در متلب (رایگان)
▪️مدت دوره: 11 ساعت
🔘 Link
〰〰〰〰〰 برنامهنویسی پایتون 〰〰〰〰〰
⚪️ فصل 1: اصول برنامهنویسی پایتون
◽️مدت دوره: 32 ساعت
🔘 Link
⚪️ فصل 2-3: کتابخانه NumPy و Matplotlib
◽️مدت دوره: 18 ساعت
🔘 Link
⚪️ فصل 4: برنامه نویسی شیء گرا در پایتون
◽️مدت دوره: 14 ساعت 30 دقیقه
🔘 Link
〰〰〰 شناسایی الگو و یادگیری ماشین 〰〰〰
⚠️ 140 ساعت ویدیوی آموزشی
🔹آموزش تئوری و مباحث ریاضیاتی طبق مراجع معتبر
🔹پیادهسازی مرحله به مرحله الگوریتمها
🔹انجام پروژه های عملی و تخصصی
🔹پیاده سازی گام به گام مقالات تخصصی
⚪️فصل 1 تا 4: از بیزین تا SVM
◽️مدت دوره: 75 ساعت
🔘 Link
⚪️فصل 5: یادگیری جمعی
◽️مدت دوره: 18 ساعت
🔘 Link
⚪️فصل 6: الگوریتمهای کاهش بعد
◽️مدت دوره: 11 ساعت
🔘 Link
⚪️فصل 7: الگوریتمهای انتخاب ویژگی
◽️مدت دوره: 16 ساعت
🔘 Link
⚪️فصل 8: الگوریتمهای خوشهبندی
◽️مدت دوره: 13 ساعت
🔘 Link
〰〰〰〰〰 شبکههای عصبی 〰〰〰〰〰
⚪️ پیاده سازی گام به گام شبکه های عصبی
◽️مدت دوره: 25 ساعت
🔘 Link
⚪️ دوره پروژه محور شبکه عصبی کانولوشنی (CNN)
◽️مدت دوره: 11 ساعت
🔘 Link
⚪️ دوره پروژه محور شبکه عصبی بازگشتی (RNN)
◽️مدت دوره: 13 ساعت
🔘 Link
⚪️دوره پروژه محور کاربرد شبکههای عمیق در بینایی ماشین
◽️مدت دوره: 16 ساعت
🔘 Link
〰〰〰〰 پردازش سیگنال مغزی 〰〰〰〰
⚪️ دوره جامع پردازش سیگنال مغزی(EEG)
◽️مدت دوره: 50 ساعت
🔘 Link
⚪️ واسط مغز-کامپیوتر مبتنی بر P300
◽️مدت دوره: 28 ساعت
🔘 Link
⚪️ واسط مغز-کامپیوتر مبتنی بر SSVEP
◽️ مدت دوره: 33 ساعت
🔘 Link
⚪️ واسط مغز-کامپیوتر مبتنی بر تصور حرکتی
◽️مدت دوره: 21 ساعت
🔘 Link
⚪️ پیادهسازی مقاله CSSP (BCI مبتنی بر MI)
◽️مدت دوره: 7 ساعت و 30 دقیقه
🔘 Link
⚪️پیادهسازی مقاله RCSP (BCI مبتنی بر MI)
◽️مدت دوره: 5 ساعت
🔘 Link
⚪️دوره تبدیل فوریه زمان کوتاه در پردازش سیگنال مغزی
◽️مدت دوره: 8 ساعت
🔘 Link
〰〰〰〰 دوره جامع پردازش تصویر 〰〰〰〰
⚪️فصل 1: آستانه گذاری تصویر، تبدیلات شدت روشنایی و هندسی
◽️مدت دوره: 30 ساعت
🔘 Link
⚪️فصل 2: پردازش هیستوگرام تصویر
◽️مدت دوره: 6 ساعت و 30 دقیقه
🔘 Link
⚪️فصل 3: فیلترهای مکانی
◽️مدت دوره: 15 ساعت و 30 دقیقه
🔘 Link
⚪️فصل 4: عملیات مورفورلوژی
◽️مدت دوره: 6 ساعت
🔘 Link
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
🔆 اولین گروه آموزشیِ تخصصی و پروژه محور 🔆
〰〰〰〰〰 برنامهنویسی متلب 〰〰〰〰〰
🔲 اصول برنامهنویسی در متلب (رایگان)
▪️مدت دوره: 11 ساعت
🔘 Link
〰〰〰〰〰 برنامهنویسی پایتون 〰〰〰〰〰
⚪️ فصل 1: اصول برنامهنویسی پایتون
◽️مدت دوره: 32 ساعت
🔘 Link
⚪️ فصل 2-3: کتابخانه NumPy و Matplotlib
◽️مدت دوره: 18 ساعت
🔘 Link
⚪️ فصل 4: برنامه نویسی شیء گرا در پایتون
◽️مدت دوره: 14 ساعت 30 دقیقه
🔘 Link
〰〰〰 شناسایی الگو و یادگیری ماشین 〰〰〰
⚠️ 140 ساعت ویدیوی آموزشی
🔹آموزش تئوری و مباحث ریاضیاتی طبق مراجع معتبر
🔹پیادهسازی مرحله به مرحله الگوریتمها
🔹انجام پروژه های عملی و تخصصی
🔹پیاده سازی گام به گام مقالات تخصصی
⚪️فصل 1 تا 4: از بیزین تا SVM
◽️مدت دوره: 75 ساعت
🔘 Link
⚪️فصل 5: یادگیری جمعی
◽️مدت دوره: 18 ساعت
🔘 Link
⚪️فصل 6: الگوریتمهای کاهش بعد
◽️مدت دوره: 11 ساعت
🔘 Link
⚪️فصل 7: الگوریتمهای انتخاب ویژگی
◽️مدت دوره: 16 ساعت
🔘 Link
⚪️فصل 8: الگوریتمهای خوشهبندی
◽️مدت دوره: 13 ساعت
🔘 Link
〰〰〰〰〰 شبکههای عصبی 〰〰〰〰〰
⚪️ پیاده سازی گام به گام شبکه های عصبی
◽️مدت دوره: 25 ساعت
🔘 Link
⚪️ دوره پروژه محور شبکه عصبی کانولوشنی (CNN)
◽️مدت دوره: 11 ساعت
🔘 Link
⚪️ دوره پروژه محور شبکه عصبی بازگشتی (RNN)
◽️مدت دوره: 13 ساعت
🔘 Link
⚪️دوره پروژه محور کاربرد شبکههای عمیق در بینایی ماشین
◽️مدت دوره: 16 ساعت
🔘 Link
〰〰〰〰 پردازش سیگنال مغزی 〰〰〰〰
⚪️ دوره جامع پردازش سیگنال مغزی(EEG)
◽️مدت دوره: 50 ساعت
🔘 Link
⚪️ واسط مغز-کامپیوتر مبتنی بر P300
◽️مدت دوره: 28 ساعت
🔘 Link
⚪️ واسط مغز-کامپیوتر مبتنی بر SSVEP
◽️ مدت دوره: 33 ساعت
🔘 Link
⚪️ واسط مغز-کامپیوتر مبتنی بر تصور حرکتی
◽️مدت دوره: 21 ساعت
🔘 Link
⚪️ پیادهسازی مقاله CSSP (BCI مبتنی بر MI)
◽️مدت دوره: 7 ساعت و 30 دقیقه
🔘 Link
⚪️پیادهسازی مقاله RCSP (BCI مبتنی بر MI)
◽️مدت دوره: 5 ساعت
🔘 Link
⚪️دوره تبدیل فوریه زمان کوتاه در پردازش سیگنال مغزی
◽️مدت دوره: 8 ساعت
🔘 Link
〰〰〰〰 دوره جامع پردازش تصویر 〰〰〰〰
⚪️فصل 1: آستانه گذاری تصویر، تبدیلات شدت روشنایی و هندسی
◽️مدت دوره: 30 ساعت
🔘 Link
⚪️فصل 2: پردازش هیستوگرام تصویر
◽️مدت دوره: 6 ساعت و 30 دقیقه
🔘 Link
⚪️فصل 3: فیلترهای مکانی
◽️مدت دوره: 15 ساعت و 30 دقیقه
🔘 Link
⚪️فصل 4: عملیات مورفورلوژی
◽️مدت دوره: 6 ساعت
🔘 Link
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
سلام
بسیار خوشحالم که اعلام کنم پکیج آموزشی دوره پایتورچ بعد از چهارماه برگزاری جلسات آنلاین تکمیل شد و در سایت قرار گرفت.
◻️در این دوره سعی کردیم مباحث مهم و کاربردی در طراحی شبکههای عصبی (از ریاضیات الگوریتمها گرفته تا پیاده سازی گام به گام شبکههای عصبی) با کمک پلتفرم پایتورچ رو پوشش بدیم.
💡 برای اینکه درک درستی از ویژگیها و ابزار پایتورچ داشته باشیم، در ابتدا تمام موارد رو خودمون دستی پیادهسازی کردیم و سپس گام به گام این موارد را با کمک ابزار پایتورچ پیادهسازی کردیم.
🔘جزئیات بیشتر👇👇
https://onlinebme.com/product/implementing-neural-networks-with-pytorch/
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@Onlinebme
بسیار خوشحالم که اعلام کنم پکیج آموزشی دوره پایتورچ بعد از چهارماه برگزاری جلسات آنلاین تکمیل شد و در سایت قرار گرفت.
◻️در این دوره سعی کردیم مباحث مهم و کاربردی در طراحی شبکههای عصبی (از ریاضیات الگوریتمها گرفته تا پیاده سازی گام به گام شبکههای عصبی) با کمک پلتفرم پایتورچ رو پوشش بدیم.
💡 برای اینکه درک درستی از ویژگیها و ابزار پایتورچ داشته باشیم، در ابتدا تمام موارد رو خودمون دستی پیادهسازی کردیم و سپس گام به گام این موارد را با کمک ابزار پایتورچ پیادهسازی کردیم.
🔘جزئیات بیشتر👇👇
https://onlinebme.com/product/implementing-neural-networks-with-pytorch/
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@Onlinebme
onlinebme
سلام بسیار خوشحالم که اعلام کنم پکیج آموزشی دوره پایتورچ بعد از چهارماه برگزاری جلسات آنلاین تکمیل شد و در سایت قرار گرفت. ◻️در این دوره سعی کردیم مباحث مهم و کاربردی در طراحی شبکههای عصبی (از ریاضیات الگوریتمها گرفته تا پیاده سازی گام به گام شبکههای عصبی)…
✅ویژگیهای دوره
◽️بررسی دقیق تئوری و ریاضیات مرتبط با شبکههای عصبی
▪️مشتق گیری
▪️توابع هزینه
▪️روشهای بهینهسازی مبتنی بر SGD
◻️پروژه محور بودن دوره| 101 مثال + 24تمرین + 40 پروژه
◻️تقویت مهارت برنامهنویسی به سبک OOP پایتون
◻️ پیادهسازی مقالات تخصصی در طول دوره
◻️ استفاده از منابع معتبر در گردآوری مباحث دوره
◻️ پشتیبانی آنلاین
🗂 محتوای پکیج آموزشی
🔷 70 ساعت ویدیوی آموزشی
🔷 جزوه دست نویس مدرس
🔷 کدهای پیادهسازی شده در طول دوره
👨💻مدرس: محمد نوری زاده چرلو
🔘جزئیات بیشتر👇👇
https://onlinebme.com/product/implementing-neural-networks-with-pytorch/
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@Onlinebme
◽️بررسی دقیق تئوری و ریاضیات مرتبط با شبکههای عصبی
▪️مشتق گیری
▪️توابع هزینه
▪️روشهای بهینهسازی مبتنی بر SGD
◻️پروژه محور بودن دوره| 101 مثال + 24تمرین + 40 پروژه
◻️تقویت مهارت برنامهنویسی به سبک OOP پایتون
◻️ پیادهسازی مقالات تخصصی در طول دوره
◻️ استفاده از منابع معتبر در گردآوری مباحث دوره
◻️ پشتیبانی آنلاین
🗂 محتوای پکیج آموزشی
🔷 70 ساعت ویدیوی آموزشی
🔷 جزوه دست نویس مدرس
🔷 کدهای پیادهسازی شده در طول دوره
👨💻مدرس: محمد نوری زاده چرلو
🔘جزئیات بیشتر👇👇
https://onlinebme.com/product/implementing-neural-networks-with-pytorch/
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@Onlinebme
✅کار با ICA در MNE-Python
👩💻هما کاشفی امیری
🗓۱۷ اسفند ۱۴۰۲
✍روش تحلیل مولفههای مستقل (Independent Components Analysis (ICA)) تکنیکی برای برآورد سیگنالهای منابع مستقل از مجموعهای از ضبطهاست که در آن سیگنالهای منبع در نسبتهای ناشناخته با هم ترکیب شدهاند. در این مقاله با ICA آشنا می شویم و اینکه چطور می توان با استفاده از پکیج MNE-Python با آن کار کرد.
⭕️ جزییات بیشتر👇
https://onlinebme.com/mne-python
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@Onlinebme
👩💻هما کاشفی امیری
🗓۱۷ اسفند ۱۴۰۲
✍روش تحلیل مولفههای مستقل (Independent Components Analysis (ICA)) تکنیکی برای برآورد سیگنالهای منابع مستقل از مجموعهای از ضبطهاست که در آن سیگنالهای منبع در نسبتهای ناشناخته با هم ترکیب شدهاند. در این مقاله با ICA آشنا می شویم و اینکه چطور می توان با استفاده از پکیج MNE-Python با آن کار کرد.
⭕️ جزییات بیشتر👇
https://onlinebme.com/mne-python
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@Onlinebme
onlinebme
✅ویژگیهای دوره ◽️بررسی دقیق تئوری و ریاضیات مرتبط با شبکههای عصبی ▪️مشتق گیری ▪️توابع هزینه ▪️روشهای بهینهسازی مبتنی بر SGD ◻️پروژه محور بودن دوره| 101 مثال + 24تمرین + 40 پروژه ◻️تقویت مهارت برنامهنویسی به سبک OOP پایتون ◻️ پیادهسازی…
Onlinebme-PyTorch-Optimizers.pdf
2.4 MB
☑️ مطالعه مروری روشهای بهینهسازی مبتنی بر گرادیان نزولی
💡روند تکامل گرادیان نزولی
⬛️ مباحثی که در این پست بررسی میکنیم:
▪️ یادگیری در شبکه عصبی
▫️تابع هزینه و نقش آن در یادگیری
▪️فلسفه گرادیان نزولی
▫️ محدودیتهای گرادیان نزولی
▪️نرخ یادگیری متغیر با زمان
▫️گرادیان نزولی با ترم ممنتوم
▪️روش بهینهسازی AdaGrad
▫️روش بهینهسازی RMSprop
▪️روش بهینهسازی AdaDelta
▫️روش بهینهسازی Adam
💡PyTorch
🔘 مطالعه در وبسایت
@Onlinebme
💡روند تکامل گرادیان نزولی
⬛️ مباحثی که در این پست بررسی میکنیم:
▪️ یادگیری در شبکه عصبی
▫️تابع هزینه و نقش آن در یادگیری
▪️فلسفه گرادیان نزولی
▫️ محدودیتهای گرادیان نزولی
▪️نرخ یادگیری متغیر با زمان
▫️گرادیان نزولی با ترم ممنتوم
▪️روش بهینهسازی AdaGrad
▫️روش بهینهسازی RMSprop
▪️روش بهینهسازی AdaDelta
▫️روش بهینهسازی Adam
💡PyTorch
🔘 مطالعه در وبسایت
@Onlinebme