onlinebme
4.82K subscribers
1.48K photos
574 videos
346 files
700 links
آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
ارائه‌دهنده‌ی پکیجهای آموزشی پروژه محور:
برنامه‌نویسی متلب-پایتون
پردازش تصویر-سیگنالهای حیاتی
شناسایی الگو
یادگیری ماشین
شبکه‌های عصبی
واسط مغز-کامپیوتر

تماس👇
09360382687
@onlineBME_admin

www.onlinebme.com
Download Telegram
پایان هفتمین دوره پردازش سیگنال EEG
ممنون از همه دوستان شرکت کننده بابت انرژی مثبتشون و ممنون از دوستان زحمت کش انجمن دانشگاه تبریز(@CEA_tbz) که این فرصت رو فراهم کردند🌹

#تبریز_بهمن_98
#پردازش_سیگنال
#EEG
#Machine_learning
#pattern_recognition

🏢 آکادمی انلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
onlinebme
دوستان دوره هشتم پردازش سیگنال EEG در تهران برگزار خواهد شد. علاقه مندان میتوانند جهت پیش ثبت نام اسم و شماره تماس خودشون رو به شماره تماس زیر ارسال کنند. بعد از تکمیل ظرفیت، جهت هماهنگی نهایی تماس گرفته خواهد شد. @onlinebme_admin 0936-038-2687 #پردازش_سیگنال…
💢 شروع ثبت نام هشتمین دوره فشرده پردازش سیگنال eeg 💢

در این دوره تمام اصول مورد نیاز برای پردازش سیگنال eeg از دید یادگیری ماشین و #پترن آموزش داده میشود.

#سرفصل_مطالب
🔵پیش پردازش سیگنال در حوزه زمان و فرکانس جهت حذف نویز و آرتیفکت

🔴 نحوه بدست آوردن ریتمهای eeg ( تتا- دلتا - آلفا- بتا- گاما ) در حوزه #زمان، فرکانس( #فوریه ) و زمان- فرکانس( #ویولت )

🔵 استخراج ویژگی های مناسب از سیگنال در حوزه زمان- فرکانس - زمان فرکانس

🔴تجزیه و تحلیل سیگنال در حوزه زمان، فرکانس و زمان فرکانس

🔵 آشنایی با مفاهیم پایه یادگیری ماشین و شناسائی الگو

🔴 آشنایی با روال انجام یک پروژه استاندارد از دید یادگیری ماشین

🔵 نحوه کلاسبندی داده با استفاده از کلاسبندهای
- SVM
- KNN
- LDA
- BAYZIAN
- TREE

🔴 اعتبارسنجی مدل با استفاده از روشهای
random sampling
k-fold cross validation
Leave one out
The hold out method

🔵 ارزیابی مدل با پارامترهای
Accuracy
Sensitivity
Specificity
Confusion matrix

🔴 انتخاب ویژگیهای مناسب
ttest
FDR

🔵 انتخاب کانالهای بهینه در سیگنالهای EEG


🔲▪️ انجام پروژه تشخیص صرع از روی سیگنالهای eeg

🔲▪️انجام پیش بینی تشنج در صرع از روی سیگنالهای eeg

🔲▪️ کلاسبندی تصور حرکتی از روی سیگنال eeg در BCI


مدت دوره: 30 ساعت
هزینه دوره: 300 هزار تومان


مدرس دوره: محمد نوری زاده چرلو
فارغ التحصیل دانشگاه علم و صنعت تهران

☎️ جهت کسب اطلاعات بیشتر میتوانید شماره زیر تماس بگیرید:
0936-038-2687
@onlinebme_admin


🔴 این دوره #اولین دوره ی فشرده در ایران است که به صورت #تخصصی سیگنال eeg را تجزیه تحلیل میکند!

یک سری مطالب اضافه شده که بعد از آپدیت شدن جزوه خام در کانال تلگرام قرار خواهد گرفت.

💡علاقه مندان میتوانند جهت پیش ثبت نام اسم و شماره تماس خودشون رو به شماره تماس زیر ارسال کنند.
بعد از تکمیل ظرفیت، جهت هماهنگی نهایی تماس گرفته خواهد شد.
@onlinebme_admin
0936-038-2687

#پردازش_سیگنال
#تهران
#EEG
#Machine_learning
#pattern_recognition

🏢 آکادمی انلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
Media is too big
VIEW IN TELEGRAM
📺 دوره تخصصی پردازش سیگنال EEG مبتنی بر تسک تصور حرکتی

جلسه هشتم: انجام پروژه های چندکلاسه تسک تصور حرکتی

خلاصه: الگوریتم csp برای داده های دو کلاسه ارائه شده و اگه بخواهیم برای داده های #چندکلاسه استفاده کنیم لازمه که در این الگوریتم رو برای داده های چندکلاسه با یک تکنیکی #تعمیم دهیم.
در این جلسه در ابتدا نحوه تبدیل داده به فرمت gdf سایت bci competition رو به فرمت .mat توضیح میدهیم سپس الگوریتم csp رو با دو روش ذکر شده در #مقاله مرتبط تعمیم میدهیم و همچنین کلاسبند SVM رو برای داده های چندکلاسه تعمیم میدهیم و یک پروژه عملی با کمک این الگوریتم طبق مقاله تخصصی انجام میدهیم تا با نحوه انجام پروژه های چند کلاسه هم آشنا شوید.

🧑‍💻مدرس: محمد نوری زاده چرلو

🌀جهت تهیه پکیج آموزشی به سایت زیر مراجعه کنید👇👇👇
https://onlinebme.com/product/brain-computer-interface-package-motorimagery/
#پردازش_سیگنال
#پیاده‌سازی_مقاله
#پروژه_عملی
#واسط_مغز_کامپیوتر
#یادگیری_ماشین
#فیلترهای_مکانی_مشترک
#csp #bci #EEG #GDF
#Machine_learning

🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
onlinebme
🎁🎁 پکیجهای آموزشی موجود در سایت🎁🎁 🔲 ▪️اصول برنامه‌نویسی متلب (رایگان) مدت دوره: 16 ساعت 🌀 https://onlinebme.com/course/matlab/ 🔲▪️ پیاده سازی گام به گام شبکه های عصبی مدت دوره: 25 ساعت 🌀 https://onlinebme.com/course/neural-networks-in-matlab/ 🔲 ▪️پترن…
#چالش1

💡جواب مسئله بالا را به کمک یکی از الگوریتم های یادگیری ماشین آموزش داده شده در دوره های onlinebme پیدا کنید.

⚠️توجه: برای هر مسئله ای راهکارهای مختلفی وجود دارد و قطعا میتوان جواب مسئله بالا را با کمی فکر کردن بدست آورد!
هدف ما از طرح این مسئله به چالش کشیدن دانش شما در حوزه یادگیری ماشین هست.
یک مثال خیلی ساده ای هست و به راحتی میتوان با کمک یادگیری ماشین حلش کرد.

به برنده مسابقه، 50 درصد تخفیف برای یکی از پکیجهای آموزشی onlinebme تعلق خواهد گرفت.
#machine_learning

@onlinebme
onlinebme
#چالش1 💡جواب مسئله بالا را به کمک یکی از الگوریتم های یادگیری ماشین آموزش داده شده در دوره های onlinebme پیدا کنید. ⚠️توجه: برای هر مسئله ای راهکارهای مختلفی وجود دارد و قطعا میتوان جواب مسئله بالا را با کمی فکر کردن بدست آورد! هدف ما از طرح این مسئله به…
علیرضا تابان:
استاد اول به x1,x2,x3,x4رندم کوچک دادن تابع هزینه رو دستی بدست اوردم بعدم تغییرات تابع هزینه نسبت به x1,x2,x3,x4 رو بدست اوردم

بعدم هم که از این رابطه استفاده کردم
x=x+0.1*deltax
برا مینیم کردن تابع هزینه که همون مجموع مربعات خطاعه استفاده کردم

استاد ایده اش با چیزایی بود که از شبکه عصبی گفته بودین

در واقع با مفهوم هایی که از شبکه عصبی برا مینیم کردن مجموع مربعات خطا یاد داده بودید استفاده کردم

جواب درسته👌👌
آپدیت شد
جواب مسئله :
3.5 4.5
9.5 3.5
#چالش1
#machine_learning
@onlinebme
🔷 یادگیری تقویتی یکی از گرایش‌های یادگیری ماشین است که از روانشناسی رفتارگرایی الهام می‌گیرد. این روش بر رفتارهایی تمرکز دارد که ماشین باید برای بیشینه کردن پاداشش انجام دهد. این مسئله، با توجه به گستردگی‌اش، در زمینه‌های گوناگونی بررسی می‌شود. مانند: نظریه بازی‌ها، نظریه کنترل، تحقیق در عملیات، نظریه اطلاعات، سامانه چندعامله، هوش ازدحامی، آمار، الگوریتم ژنتیک، بهینه‌سازی بر مبنای شبیه‌سازی. در مبحث تحقیق در عملیات و در ادبیات کنترل، حوزه‌ای که در آن روش یادگیری تقویتی مطالعه می‌شود برنامه‌نویسی تخمینی پویای (approximate dynamic programming) خوانده می‌شود.

🔺 در یادگیری ماشین با توجه به این که بسیاری از الگوریتم‌های یادگیری تقویتی از تکنیک‌های برنامه‌نویسی پویا استفاده می‌کنند معمولاً مسئله تحت عنوان یک فرایند تصمیم‌گیری مارکف مدل می‌شود. تفاوت اصلی بین روش‌های سنتی و الگوریتم‌های یادگیری تقویتی این است که در یادگیری تقویتی نیازی به داشتن اطلاعات راجع به فرایند تصمیم‌گیری ندارد و این که این روش روی فرایندهای مارکف بسیار بزرگی کار می‌کند که روش‌های سنتی در آنجا ناکارآمدند.

🔺 یادگیری تقویتی با یادگیری با نظارت معمول دو تفاوت عمده دارد، نخست اینکه در آن زوج‌های صحیح ورودی و خروجی در کار نیست و رفتارهای ناکارامد نیز از بیرون اصلاح نمی‌شوند، و دیگر آنکه تمرکز زیادی روی کارایی زنده وجود دارد که نیازمند پیدا کردن یک تعادل مناسب بین اکتشاف چیزهای جدید و بهره‌برداری از دانش اندوخته شده دارد.
منبع: ویکی پدیا

#robotic
#artificial_intelligence 
#machine_learning 
#reinforcement_learning 

🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme