onlinebme
4.82K subscribers
1.48K photos
574 videos
345 files
700 links
آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
ارائه‌دهنده‌ی پکیجهای آموزشی پروژه محور:
برنامه‌نویسی متلب-پایتون
پردازش تصویر-سیگنالهای حیاتی
شناسایی الگو
یادگیری ماشین
شبکه‌های عصبی
واسط مغز-کامپیوتر

تماس👇
09360382687
@onlineBME_admin

www.onlinebme.com
Download Telegram
رسم موقعیت مکانی الکترودهای سیگنال EEG با استفاده از پکیج MNE پایتون
#MNE_PYTHON
👩‍💻هما کاشفی امیری
🗓7 دی 1402

✍️در این مقاله توضیح می‌دهیم که چطور می‌توان با استفاده از پکیج MNE پایتون، موقعیت مکانی حسگرها را خواند و رسم کرد و پکیج MNE چطور موقعیت مکانی حسگرها را تشخیص می‌دهد.

⭕️ جزئیات بیشتر👇
https://onlinebme.com/working-with-sensor-locations-with-mne-python/
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@Onlinebme
سال نو میلادی بر هم‌وطنان عزیز مسیحی مبارک باشه❤️

@onlinebme
onlinebme
Pytorch and Neural Networks#Project03.pdf
Pytorch and Neural Networks#Project04.pdf
1.9 MB
دوره پایتورچ
🔷  فصل پنجم: شبکه عصبی MLP
🔘▪️ پروژه عملی: سری چهارم
@Onlinebme
Forwarded from onlinebme
⬛️◼️◾️ پکیجهای آموزشی Onlinebme ◾️◼️⬛️

🔆 اولین گروه آموزشیِ تخصصی و پروژه محور 🔆


برنامه‌نویسی متلب

🔲 اصول برنامه‌نویسی در متلب (رایگان)
▪️
مدت دوره: 11 ساعت
🔘 Link


برنامه‌نویسی پایتون 

⚪️ فصل 1: اصول برنامه‌نویسی پایتون 
◽️مدت دوره: 32 ساعت
🔘 Link
⚪️ فصل 2-3: کتابخانه NumPy و Matplotlib
◽️مدت دوره: 18 ساعت
🔘 Link
⚪️ فصل 4: برنامه نویسی شیء گرا در پایتون
◽️مدت دوره: 14 ساعت 30 دقیقه
🔘 Link


شناسایی الگو و یادگیری ماشین

⚠️ 140 ساعت ویدیوی آموزشی
🔹آموزش تئوری و مباحث ریاضیاتی طبق مراجع معتبر
🔹پیاده‌سازی مرحله به مرحله الگوریتمها
🔹انجام پروژه های عملی و تخصصی
🔹پیاده سازی گام به گام مقالات تخصصی
 
⚪️فصل 1 تا 4: از بیزین تا SVM
◽️مدت دوره: 75 ساعت
🔘 Link
⚪️فصل 5: یادگیری جمعی
◽️مدت دوره: 18 ساعت
🔘 Link
⚪️فصل 6: الگوریتم‌های کاهش بعد
◽️مدت دوره: 11 ساعت
🔘 Link
⚪️فصل 7:  الگوریتم‌های انتخاب ویژگی
◽️مدت دوره: 16 ساعت
🔘 Link
⚪️فصل 8: الگوریتم‌های خوشه‌بندی
◽️مدت دوره: 13 ساعت
🔘 Link


شبکه‌های عصبی

⚪️ پیاده سازی گام به گام شبکه های عصبی
◽️
مدت دوره: 25 ساعت
🔘 Link
⚪️ دوره پروژه محور شبکه عصبی کانولوشنی (CNN)
◽️
مدت دوره: 11 ساعت
🔘 Link
⚪️ دوره پروژه محور شبکه عصبی بازگشتی (RNN)
◽️
مدت دوره: 13 ساعت
🔘 Link
⚪️دوره پروژه محور کاربرد شبکه‌های عمیق در بینایی ماشین
◽️
مدت دوره: 16 ساعت
🔘 Link


پردازش سیگنال مغزی

⚪️ دوره جامع پردازش سیگنال مغزی(EEG)
◽️مدت دوره: 50 ساعت
🔘 Link
⚪️ واسط مغز-کامپیوتر مبتنی بر P300
◽️
مدت دوره: 28 ساعت
🔘 Link
⚪️ واسط مغز-کامپیوتر مبتنی بر SSVEP
◽️
مدت دوره: 33 ساعت
🔘 Link
⚪️ واسط مغز-کامپیوتر مبتنی بر تصور حرکتی
◽️
مدت دوره: 21 ساعت
🔘 Link
⚪️ پیاده‌سازی مقاله CSSP (BCI مبتنی بر MI)
◽️
مدت دوره: 7 ساعت و 30 دقیقه
🔘 Link
⚪️پیاده‌سازی مقاله RCSP (BCI مبتنی بر MI)
◽️
مدت دوره: 5 ساعت
🔘 Link
⚪️دوره تبدیل فوریه زمان کوتاه در پردازش سیگنال مغزی
◽️
مدت دوره: 8 ساعت
🔘 Link


دوره جامع پردازش تصویر

⚪️فصل 1: آستانه گذاری تصویر، تبدیلات شدت روشنایی و هندسی
◽️مدت دوره: 30 ساعت
🔘 Link
⚪️فصل 2: پردازش هیستوگرام تصویر
◽️مدت دوره: 6 ساعت و 30 دقیقه
🔘 Link
⚪️فصل 3: فیلترهای مکانی
◽️مدت دوره: 15 ساعت و 30 دقیقه
🔘 Link
⚪️فصل 4: عملیات مورفورلوژی
◽️مدت دوره: 6 ساعت
🔘 Link


🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
خواندن و پردازش داده ی EEG فرمت .gdf با استفاده از پکیج MNE-Python

#MNE_PYTHON
👩‍💻هما کاشفی امیری
🗓21 دی 1402

✍️فرمت داده‌ی General Data Format (GDF) برای سیگنال‌های پزشکی یک فرمت فایل داده‌ی پزشکی و علمی است. هدف GDF ترکیب و ادغام بهترین ویژگی‌های همه‌ی فرمت‌های فایل بیوسیگنال در یک فرمت فایل واحد است. در این مقاله بررسی می‌کنیم که چطور می‌توان داده‌های EEG یا MEG فرمت .gdf را با پکیج MNE پایتون خواند و پردازش کرد.

⭕️ جزئیات بیشتر👇
https://onlinebme.com/gdf-file-format-in-mne-python/

🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@Onlinebme
onlinebme
Pytorch and Neural Networks#Project04.pdf
Pytorch and Neural Networks#Project05.pdf
1.3 MB
دوره پایتورچ
🔷  فصل پنجم: شبکه عصبی MLP
🔘▪️ پروژه عملی: سری پنجم
◼️Cost functions  
   🔻MSE
   🔺️MAE
   🔻Huber 
   🔺Hinge 
   🔻Cross-Entropy 
   🔺Binary Cross-Entropy
▫️KL Divergence
@Onlinebme
onlinebme
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
دوره جامع و پروژه محور کار با سیگنال EEG با استفاده از پکیج MNE پایتون

بخش اول: مباحث پایه و عمومی

  🔹 نصب پکیج MNE_Python
  🔹 خواندن دیتاهای EEG به فرمت های مختلف (gdf, fif, mat, csv)
  🔹 کار با داده های EEGپیوسته و جداکردن ترایال ها
  🔹 پیش پردازش سیگنال
  🔹 تحلیل Time-Frequency سیگنال
  🔹 تجسم سازی سیگنال‌ها و نمایش نتایج
  🔹 انجام چندین پروژه ی عملی با الگوریتم های یادگیری ماشین

بخش دوم: انجام پروژه با شبکه‌های یادگیری عمیق

  🔸پروژه ی تشخیص بیماری صرع از روی سیگنال های EEG با الگوریتم های یادگیری عمیق
  🔸پروژه ی کلاسبندی سیگنال های EEG تصور حرکتی با الگوریتم های یادگیری عمیق (CNN)

  🔸و پروژه های دیگر


🔻نوع دوره: آنلاین همراه با ضبط ویدیوی جلسات
▪️مدت دوره: حدودا 30 ساعت

👩‍💻مدرس: هما کاشفی امیری

جهت ثبت نام به آیدی زیر پیام دهید:
آیدی تلگرام: @mne_python_admin

#python  #MNE_Python #EEG

@Onlinebme
onlinebme pinned a photo
onlinebme
دوره جامع و پروژه محور کار با سیگنال EEG با استفاده از پکیج MNE پایتون بخش اول: مباحث پایه و عمومی   🔹 نصب پکیج MNE_Python   🔹 خواندن دیتاهای EEG به فرمت های مختلف (gdf, fif, mat, csv)   🔹 کار با داده های EEGپیوسته و جداکردن ترایال ها   🔹 پیش پردازش سیگنال…
MNE_PYTHON Course.pdf
1.1 MB
دوره‌ی تخصصی MNE-Python
🔷  فصل اول: مبانی سیگنال EEG
    🔹ریتم‌های سیگنال EEG
    🔹نویز و آرتیفکت
   🔹 پارادایم‌های ثبت
   🔹فیلترینگ
🔷  فصل دوم: آموزش MNE-Python
    🔹نصب
    🔹لود کردن دیتاهای EEG
   
      🔸 gdf,.fif,.mat,.csv
    🔹عملیات مقدماتی
        🔸متدهای Inplace
        🔸کار با موقعیت سنسورها
    🔹کار با داده‌ی پیوسته
       🔸ساختار داده Raw
       🔸کار با eventها
       🔸نمایش داده
    🔹پیش پردازش
       🔸شناسایی آرتیفکت
       🔸کار با bad channels
       🔸فیلترینگ
       🔸اعمال ICA
       🔸تنظیم رفرنس
    🔹جداسازی داده پیوسته
      🔸تجسم سازی Epoch
      🔸تبدیل Epochs به دیتافریم
    🔹تحلیل زمان-فرکانس
      🔸 EpochsSpectrum
🔘 پروژه: کلاسبندی EEG با یادگیری ماشین
🔷فصل سوم: انجام پروژه با شبکه‌های عمیق
     🔸تشخیص بیماری صرع
     🔸کلاسبندی با CNN
     🔸پیاده سازی مقاله
@Onlinebme
onlinebme
Pytorch and Neural Networks#Project05.pdf
Pytorch and Neural Networks#Project06.pdf
607.5 KB
دوره پایتورچ
🔷  فصل ششم: روش‌های بهینه‌سازی
🔘▪️ پروژه عملی: سری ششم
◼️Optimizers   
   🔻SGD
   🔺️SGD+ momentum
   🔻SGD+Nesterov momentum
   🔺AdaGrad 
   🔻RMSprop 
   🔺AdaDelta
   🔻Adam 
   🔺Nadam
   ▫️Classification-Regression

@Onlinebme
حاشیه‌نویسی سیگنال پیوسته با استفاده از پکیج MNE پایتون

#MNE_PYTHON
👩‍💻هما کاشفی امیری
🗓12 بهمن 1402

✍️با استفاده از پکیج MNE پایتون می‌توانیم سیگنال پیوسته را نشانه‌گذاری یا به اصطلاح حاشیه‌نویسی کنیم و همچنین از این حاشیه‌نویسی‌ها در مراحل بعدی پردازش استفاده کنیم. در این مقاله، روند انجام آن را توضیح می‌دهیم.

⭕️ جزئیات بیشتر👇
https://onlinebme.com/raw-signal-annotation-using-mne-oython/

🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@Onlinebme
onlinebme
Pytorch and Neural Networks#Project06.pdf
Pytorch and Neural Networks#Project07.pdf
1.2 MB
دوره پایتورچ
🔷  فصل هفتم:
پیاده‌سازی شبکه‌های عصبی در پایتورچ
🔘 پروژه عملی: سری هفتم
◼️autograd    
◼️torch.optim
◼️torch.nn
◼️torch.nn.Module
◼️torch.nn.functional


@Onlinebme
کتابخانه‌های ضروری مکمل کار با پکیج MNE پایتون

👩‍💻هما کاشفی امیری
🗓۲۶ بهمن ۱۴۰۲

به منظور کار با پکیج MNE پایتون، شناخت و یادگیری چند مورد از کتابخانه‌های پایتون ضروری است. این کتابخانه در خواندن دیتاست‌هایی مثل EEG، ذخیره سازی و جداسازی و تقسیم دیتاست به بخش‌های آموزش و آزمایش و همچنین استفاده از تکنیک‌های آموزش مدل مانند k-fold cross validation و … ضروری هستند. این کتابخانه‌ها عبارتند از: numpy، pandas و matplotlib و scikit-learn. در این مقاله به بررسی این کتابخانه‌های مهم پایتون و نقش آنها در کار با پکیج mne می پردازیم.

⭕️ جزئیات بیشتر👇

https://onlinebme.com/necessary-python-libraries-for-working-with-mne/

🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@Onlinebme
onlinebme
Pytorch and Neural Networks#Project07.pdf
Pytorch and Neural Networks#Project08.pdf
2 MB
دوره پایتورچ
🔷  فصل هفتم: شبکه عصبی کانولوشنال


🔘 پروژه عملی: سری هشتم
◼️CNN
◼️Convolutional Layers
◼️Pooling Layers
◼️Image Processing
◼️Signal Processing
◼️Classification
◼️Regression


@Onlinebme