onlinebme
4.82K subscribers
1.48K photos
574 videos
346 files
700 links
آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
ارائه‌دهنده‌ی پکیجهای آموزشی پروژه محور:
برنامه‌نویسی متلب-پایتون
پردازش تصویر-سیگنالهای حیاتی
شناسایی الگو
یادگیری ماشین
شبکه‌های عصبی
واسط مغز-کامپیوتر

تماس👇
09360382687
@onlineBME_admin

www.onlinebme.com
Download Telegram
This media is not supported in your browser
VIEW IN TELEGRAM
📺 دوره تخصصی پیاده سازی شبکه‌های عصبی در متلب
مدرس: محمد نوری زاده چرلو
فارغ التحصیل دانشگاه علم و صنعت تهران

1⃣جلسه اول: مقدمه‌ای بر شبکه‌ی عصبی (#نورون و اجزای تشکیل دهنده آن)
#مغز ، #توانایی‌های_مغز_انسان ، #نورون_بیولوژیکی ، #نورون_مصنوعی ، #توابع_فعال

🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
onlinebme
📺 دوره تخصصی پیاده سازی شبکه‌های عصبی در متلب مدرس: محمد نوری زاده چرلو فارغ التحصیل دانشگاه علم و صنعت تهران 1⃣جلسه اول: مقدمه‌ای بر شبکه‌ی عصبی (#نورون و اجزای تشکیل دهنده آن) #مغز ، #توانایی‌های_مغز_انسان ، #نورون_بیولوژیکی ، #نورون_مصنوعی ، #توابع_فعال…
📺 دوره تخصصی پیاده سازی شبکه‌های عصبی در متلب
مدرس: محمد نوری زاده چرلو
فارغ التحصیل دانشگاه علم و صنعت تهران

1⃣جلسه اول: مقدمه‌ای بر شبکه‌ی عصبی (#نورون و اجزای تشکیل دهنده آن)

در جلسه اول ما درس شبکه عصبی را شروع می‌کنیم،‌این درس مقدمه‌ای بر شبکه عصبی هست و ما در‌این جلسه خواص مغز انسان را توصیف می‌کنیم و با کامپیوترهای دیجیتال مقایسه می‌کنیم و در نهایت توضیح می‌دهیم که چرا مغز انسان انقدر توانمند است و چرا مدلسازی مغز انسان به قدری اهمیت دارد که در آمریکا مدلسازی مغز انسان یک پروژه ملی شده است. یکی از خصوصیات مغز انسان یادگیری و ذخیره اطلاعات است. ما در‌این جلسه توضیح میدهیم که مغز به چه صورت یاد می‌گیرد و دانش بدست آورده کجا ذخیره می‌کند. بعد از‌اینکه توانایی‌های مغز انسان را توضیح دادیم کوچکترین واحد اساسی مغز که نورون است را توضیح میدهیم. بعد از توضیح خواص نورون بیولوژیکی، نورون مصنوعی را که مدل ساده شده نورون بیولوژیکی هست را توضیح داده و روابط ریاضیاتی آن را بیان می‌کنیم.

بعد از آن انواع توابع فعال برای یک نورون مصنوعی را توضیح داده و در متلب پیاده سازی می‌کنیم تا شما با عملکرد‌ این توابع فعال آشنا شوید. و در نهایت شکلهای گرافیگی یک نورون را توضیح داده و انواع روشهای یادگیری ماشین را توضیح میدهیم و آماده می‌شویم برای جلسه بعد که وارد دنیای شبکه عصبی شویم و شروع کنیم به صورت تخصصی شبکه‌های عصبی را یکی یکی در متلب پیاده‌سازی کنیم و پروژه‌های عملی انجام دهیم. مشاهده ‌این جلسه پیش نیاز جلسات بعدی هست لذا حتما‌ این جلسه را نگاه کنید تا جلسات بعدی به مشکل نخورید.

نکته: بخشی از مباحث این جلسه طبق مطالب فصل اول کتاب  Simon haykin است.

کلمات کلیدی: مغز، توانایی‌های مغز انسان، نورون بیولوژیکی، نورون مصنوعی، توابع فعال


جهت تهیه کامل پکیج آموزشی شبکه عصبی به لینک زیر مراجعه کنید. 👇👇 👇👇
https://onlinebme.com/product/neural-networks-package/

🎁🎁 کد #تخفیف 20 درصدی:
Neuralnetworks98
مهلت اعتبار: 2 روز

🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
onlinebme
📺 دوره تخصصی پیاده سازی شبکه‌های عصبی در متلب مدرس: محمد نوری زاده چرلو فارغ التحصیل دانشگاه علم و صنعت تهران 2⃣جلسه دوم: پیاده‌سازی شبکه عصبی #پرسپترون_تک_لایه با قانون یادگیری پرسپترون #پرسپترون_تک_لایه ، #پرسپترون #ماکزیمم_شباهت ، #داده_خطی ، #کلاسبندی…
📺 دوره تخصصی پیاده سازی شبکه‌های عصبی در متلب
مدرس: محمد نوری زاده چرلو
فارغ التحصیل دانشگاه علم و صنعت تهران
2⃣جلسه دوم: پیاده‌سازی شبکه عصبی #پرسپترون_تک_لایه با قانون یادگیری پرسپترون

در جلسه دوم ما در ابتدا شبکه‌عصبی پرسپترون تک لایه را آموزش داده و در متلب گام به گام پیاده‌سازی ‌می‌کنیم. این شبکه ساده‌ترین نوع شبکه عصبی است که برای #کلاسبندی داده‌های #خطی استفاده می‌شود. قبل از اینکه بخواهیم یک شبکه عصبی را در محیطی ‌پیاده‌سازی کنیم لازم است که در ابتدا به #سه_سوال_اساسی جواب بدیم:

1-     ساختار این شبکه چیه؟
2-     قانون یادگیری شبکه چیه؟
3-      کاربرد این شبکه کجاست؟

ما در این جلسه به این سه سوال جواب داده و سپس #تئوری_همگرایی قانون یادگیری پرسپترون را آموزش میدهیم. بعد از اینکه تئوری  شبکه عصبی پرسپترون تک لایه را یاد گرفتیم یک #الگوریتم_خلاصه_شده جهت یادگیری این شبکه می‌نویسم و طبق آن در متلب به صورت #مرحله-به-مرحله #پیاده‌سازی ‌می‌کنیم. و در نهایت چند مثال عملی انجام می‌دهیم تا مطالب را به طور عملی درک کنیم.  سپس برای درک بهتر مطالب، آموزش می‌دهیم که چطور میتوان #مرز تفکیک کننده داده‌ها را رسم کرد تا متوجه بشویم که شبکه عصبی پرسپترون تک لایه چطور یک مسئله کلاسبندی را انجام میدهد.

در نهایت #عیب الگوریتم #یادگیری_پرسپترون را با یک مثال عملی در متلب نشان میدهیم و بعد سراغ #راه_حل می‌رویم. قانون یادگیری پرسپترون با اینکه انقلابی در حوزه هوش مصنوعی به پا کرده است ولی دو تا مشکل اساسی دارد که در ویدیو توضیح می‌دهیم. به دلیل اینکه طبقه‌بند ماکزیمم شباهت(maximum likelihood ) شباهت خیلی زیادی به پرسپترون تک لایه دارد فصل چهارم کتاب Simon haykin طبقه بندML را در ادامه مطالب پرسپترون تک لایه آورده و ایده کلاسبندی این طبقه بند را توضیح داده است. ماهم برای اینکه رشته مطالب کتاب از دست نرود تئوری کلاسبند ML را توضیح داده و سپس در متلب ‌پیاده‌سازی کرده و یک مثال عملی هم با این کلاسبند انجام می‌دهیم. سپس شباهت و تفاوت این دو کلاسبند را به طور مفصل توضیح میدهیم و نشان میدهیم که شبکه عصبی اگر قانون یادگیری پرسپترون را بهبود دهد خیلی بهتر از کلاسبندهای #پارامتری مثل ML خواهد بود.  

🔺نکته: مباحث این جلسه طبق مطالب فصل 4 کتاب Simon haykin است.

🔍 کلمات کلیدی: شبکه عصبی پرسپترون تک لایه، قانون یادگیری پرسپترون، داده خطی ، ایراد قانون یادگیری پرسپترون، کلاسبند پارمتری و غیر پارامتری، کلاسبند ماکزیمم شباهت


جهت تهیه کامل پکیج آموزشی شبکه عصبی به لینک زیر مراجعه کنید. 👇👇 👇👇
https://onlinebme.com/product/neural-networks-package/

🎁🎁 کد #تخفیف 20 درصدی:
Neuralnetworks98
مهلت اعتبار: 2 روز

🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
onlinebme
📺 دوره تخصصی پیاده سازی شبکه‌های عصبی در متلب مدرس: محمد نوری زاده چرلو فارغ التحصیل دانشگاه علم و صنعت تهران 1⃣جلسه اول: مقدمه‌ای بر شبکه‌ی عصبی (#نورون و اجزای تشکیل دهنده آن) #مغز ، #توانایی‌های_مغز_انسان ، #نورون_بیولوژیکی ، #نورون_مصنوعی ، #توابع_فعال…
جزوه خام جلسه اول- مقدمه.pdf
1.4 MB
📋 #جزوه_خام جلسه اول: مقدمه‌ای بر شبکه‌ی عصبی (#نورون و اجزای تشکیل دهنده آن)

💡دوستانی که ویدیوهارو تهیه کرده اند میتوانند قبل از مشاهده ویدیوی هر جلسه از جزوه خام پرینت گرفته و همراه با مدرس نکات مهم رو یادداشت کنند.

🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
onlinebme
📺 دوره تخصصی پیاده سازی شبکه‌های عصبی در متلب مدرس: محمد نوری زاده چرلو فارغ التحصیل دانشگاه علم و صنعت تهران 2⃣جلسه دوم: پیاده‌سازی شبکه عصبی #پرسپترون_تک_لایه با قانون یادگیری پرسپترون #پرسپترون_تک_لایه ، #پرسپترون #ماکزیمم_شباهت ، #داده_خطی ، #کلاسبندی…
جزوه_خام_جلسه_دوم_پرسپترون_تک_لایه.pdf
2 MB
📋 #جزوه_خام جلسه دوم: پیاده‌سازی شبکه عصبی #پرسپترون_تک_لایه با قانون یادگیری پرسپترون

💡دوستانی که ویدیوهارو تهیه کرده اند میتوانند قبل از مشاهده ویدیوی هر جلسه از جزوه خام پرینت گرفته و همراه با مدرس نکات مهم رو یادداشت کنند.

🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
onlinebme
📺 دوره تخصصی پیاده سازی شبکه‌های عصبی در متلب مدرس: محمد نوری زاده چرلو فارغ التحصیل دانشگاه علم و صنعت تهران 2⃣جلسه دوم: پیاده‌سازی شبکه عصبی #پرسپترون_تک_لایه با قانون یادگیری پرسپترون #پرسپترون_تک_لایه ، #پرسپترون #ماکزیمم_شباهت ، #داده_خطی ، #کلاسبندی…
Media is too big
VIEW IN TELEGRAM
📺 دوره تخصصی پیاده سازی شبکه‌های عصبی در متلب
مدرس: محمد نوری زاده چرلو
فارغ التحصیل دانشگاه علم و صنعت تهران

3⃣جلسه سوم: قانون یادگیری #LMS و پیاده‌سازی شبکه عصبی #آدالاین و انجام پروژه عملی تشخیص سرطان سینه

#آدالاین #پارامترهای_ارزیابی ، #پروژه_عملی، #تشخیص_سرطان_سینه

🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
onlinebme
📺 دوره تخصصی پیاده سازی شبکه‌های عصبی در متلب مدرس: محمد نوری زاده چرلو فارغ التحصیل دانشگاه علم و صنعت تهران 3⃣جلسه سوم( بخش دوم ): انجام پروژه های عملی با استفاده از شبکه های عصبی #آدالاین #پرسپترون ، #پروژه_عملی، #ناحیه‌بندی_تصویر #مدلسازی_گیتهای_منطقی…
📺 دوره تخصصی پیاده سازی شبکه‌های عصبی در متلب
مدرس: محمد نوری زاده چرلو
فارغ التحصیل دانشگاه علم و صنعت تهران

3⃣جلسه سوم: قانون یادگیری LMS و پیاده‌سازی شبکه عصبی #آدالاین

این جلسه یکی از #مهمترین جلسات دوره تخصصی پیاده‌سازی شبکه‌های عصبی در متلب است. در جلسه دوم ما قانون یادگیری پرسپترون را آموزش دادیم و دو ایراد اساسی این قانون را مطرح کردیم. یکی از ایرادهای قانون پرسپترون این بود که الگوریتم زمانی که داده ما غیرخطی بود (داده‌ای که در آن نتوان با یک خط از هم جدا کرد) نمیتوانست همگرا شود و در نتیجه نمیتوانست یاد بگیرد. و ایراد دوم این الگوریتم این است که نمیتواند مرز کلاسبندی بهینه‌ای بدست آورد. ما در این جلسه الگوریتم #حداقل_مربعات_خطا
Least means square error
را معرفی می‌کنیم و ایرادات الگوریتم پرسپترون را حل می‌کنیم. الگوریتم LMS به جای اینکه دنبال خطای صفر باشد، دنبال #خطای_حداقل است. و با این روش زمانی که داده به صورت غیرخطی هم باشد همگرا می‌شود.

الگوریتم #LMS با دو روش به نام #وینرهاف و گرادیان نزولی وزنهای سیناپسی بهینه را محاسبه می‌کند. این روش بهینه‌ترین مرز ممکن را بدست می‌آورد ولی یک ایراد اساسی دارد و زمانی که تعداد ویژگی ها زیاد باشد محاسبه ماتریس autocorrelation بسیار سخت می‌شود. برای حل این مشکل الگوریتم #گردایان_نزولی مطرح می‌شود، این الگوریتم به جای اینکه در یک لحظه وزنهای سیناپسی را محاسبه کند در طول زمان در جهت شیب منفی خطا حرکت می‌کند و  وزنهای سیناپسی بهینه را محاسبه می‌کند. ما در ابتدا الگوریتم وینرهاف را توضیح میدهیم و سپس مرحله به مرحله در متلب پیاده سازی می‌کنیم و سپس الگوریتم گرادیان نزولی را توضیح داده و مرحله به مرحله در متلب پیاده سازی می‌کنیم. و در نهایت شبکه عصبی #آدلاین را معرفی می‌کنیم و با استفاده از این شبکه مسائل کلاسبندی را انجام میدهیم. شبکه عصبی تک لایه آدالاین هر دو ایراد شبکه عصبی پرسپترون تک لایه را حل می‌کند.

بعد از این ما طبق کتاب Simon haykin انواع #روشهای_توقف_آموزش شبکه عصبی را توضیح میدهم. سه روش برای توقف آموزش شبکه عصبی است که هر سه روش آموزش داده شده و در متلب پیاده سازی می‌شوند.

برای آموزش شبکه عصبی نیاز است که داده ها به شبکه اعمال شوند و شبکه در طول زمان آموزش ببیند و برای اینکار دو روش به نام #دسته‌ای (batch mode) و #موردی(pattern mode) کتاب معرفی کرده که هر دو روش توضیح داده شده و در متلب پیاده‌سازی می‌شوند و مزایا و معایب هر روش توضیح داده می‌شود و در انتهای جلسه #پارامترهای_ارزیابی
#accuracy
#sensitivity
#specificity
یک طبقه بند توضیح داده می‌شود و سپس پروژه‌های انجام شده با پارامترهای گفته شده ارزیابی می‌شود.  و همچنین الگورتیم #cross_validation  که برای انتخاب ساختار بهینه یک شبکه عصبی استفاده میشود را توضیح میدهیم.

☑️ برای اینکه با کاربردهای عملی این شبکه‌ها آشنا شوید در یک ویدیو جداگانه 3 #پروژه_عملی به نام #تشخیص_سرطان_سینه ، #ناحیه‌بندی_تصویر و #پیاده‌سازی_گیتهای_منطقی AND, OR  را با استفاده از شبکه‌های عصبی به صورت مرحله به مرحله در متلب پیاده‌سازی کرده‌ایم.

🔻نکته: تمام مباحث این جلسه طبق مطالب فصل 5 کتاب Simon haykin است.

 
جهت تهیه کامل پکیج آموزشی شبکه عصبی به لینک زیر مراجعه کنید. 👇👇 👇👇
https://onlinebme.com/product/neural-networks-package/

جهت خرید جلسه سوم به لینک زیر مراجعه کنید👇👇👇
https://onlinebme.com/product/lms-and-adaline/

🎁🎁 کد #تخفیف 20 درصدی:
Neuralnetworks98
مهلت اعتبار: 1 روز

🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
onlinebme
📺 دوره تخصصی پیاده سازی شبکه‌های عصبی در متلب مدرس: محمد نوری زاده چرلو فارغ التحصیل دانشگاه علم و صنعت تهران 3⃣جلسه سوم: قانون یادگیری #LMS و پیاده‌سازی شبکه عصبی #آدالاین و انجام پروژه عملی تشخیص سرطان سینه #آدالاین #پارامترهای_ارزیابی ، #پروژه_عملی،…
جزوه_خام_جلسه_سوم_پرسپترون_تک_لایه.pdf
1.8 MB
📋 #جزوه_خام جلسه سوم: قانون یادگیری #LMS و پیاده‌سازی شبکه عصبی #آدالاین

💡دوستانی که ویدیوهارو تهیه کرده اند میتوانند قبل از مشاهده ویدیوی هر جلسه از جزوه خام پرینت گرفته و همراه با مدرس نکات مهم رو یادداشت کنند.

🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
onlinebme
📺 دوره تخصصی پیاده سازی شبکه‌های عصبی در متلب مدرس: محمد نوری زاده چرلو فارغ التحصیل دانشگاه علم و صنعت تهران 4⃣ جلسه چهارم: پیاده‌سازی شبکه عصبی پرسپترون چندلایه با قانون یادگیری پس انتشار خطا در متلب #پرسپترون_چندلایه ، #پس_انتشار_خطا #پروژه_عملی، #…
📺 دوره تخصصی پیاده سازی شبکه‌های عصبی در متلب
مدرس: محمد نوری زاده چرلو
فارغ التحصیل دانشگاه علم و صنعت تهران
4⃣ جلسه چهارم: پیاده‌سازی شبکه عصبی #پرسپترون_چندلایه با قانون یادگیری #پس_انتشار_خطا در متلب

این جلسه مهمترین جلسه دوره تخصصی پیاده‌سازی شبکه‌های عصبی در متلب است. ما در جلسه سوم الگوریتم #LMS را مطرح کرده و در نهایت شبکه‌عصبی آدالاین را معرفی کردیم که یک شبکه عصبی بهینه برای مسائل کلاسبندی و رگرسیون است.‌این شبکه‌ ایرادات شبکه عصبی پرسپترون تک لایه را برطرف کرد ولی خودش یک #ایراد اساسی دارد. که ‌این ‌ایراد در تمام شبکه‌های عصبی تک لایه وجود دارد. ‌ایراد شبکه عصبی آدالاین و یا پرسپترون تک لایه در #ساختارشان هست و به خاطر ‌اینکه #تک_لایه هستند نمی توانند مسائل #غیرخطی مثل xor را حل کنند. برای حل‌ این مسئله شبکه عصبی پرسپترون چندلایه مطرح شده است که با اضافه کردن #چند_لایه_پنهان توانسته‌اند مسائل بسیار پیچیده را به راحتی حل کنند. در ‌این جلسه تئوری الگوریتم پس ‌انتشار خطا کامل توضیح داده می‌شود و در نهایت در متلب مرحله به مرحله پیاده‌سازی می شود.‌ این جلسه برای همه گروه دانشجویی و مهندسی بسیار مفید هست و می‌توانند بعد از مشاهده‌ ویدیو هم #پروژه‌های_تخصصی خودشان را انجام دهند و هم ‌ایده‌های خود را در الگوریتم پس انتشار خطا ارائه بکنند. برای ‌اینکه در ‌این جلسه به مشکل نخورید بهتر است با #مشتق‌گیری آشنا باشید. جلسه کاملی هست و به جرات می‌‎توان گفت که #اولین دوره‌ای هست که به صورت تخصصی چنین شبکه‌ای را به صورت گام به گام در متلب پیاده‌سازی می‌کند.

بعد از‌ اینکه شبکه عصبی در متلب پیاده ‌شد، #عملکرد_لایه‌های_مختلف شبکه با #مثال_عملی توضیح داده می‌شود تا به صورت دقیق و عملی با ساختار و عملکرد شبکه‌های عصبی چندلایه آشنا شوید و متوجه شوید که شبکه‌های عصبی چندلایه چطور یک مسئله پیچیده را با ساده‌سازی مسئله در لایه‌های مختلف حل می کنند. ‌این جلسه، جلسه مورد علاقه من هست و تمام سعیم را کردم که به #زبان_ساده و در عین حال تخصصی و #جامع شبکه عصبی پرسپترون چندلایه و قانون یادگیری پس انتشار خطا را توضیح دهم و امیدوارم برای شما مفید باشد.

در انتهای دوره چندین پروژه عملی از جمله #تشخیص_سرطان_سینه (پروژه عملی #طبقه‌بندی) و #پیش_بینی_میزان_آلودگی_هوا (پروژه عملی #رگرسیون) با استفاده از شبکه عصبی پرسپترون چندلایه به صورت #گام_به_گام در متلب پیاده‌سازی شد تا با انجام پروژه‌های عملی هم آشنا شوید و بتوانید پروژه‌های تخصصی خودتان را با مشاهده ‌این ویدیو انجام دهید.

نکته: تمام مباحث ‌این جلسه طبق مطالب فصل 6 کتاب Simon haykin است.

 
جهت خرید جلسه چهارم به لینک زیر مراجعه کنید👇👇👇
https://onlinebme.com/product/multilayer-perceptron-with-backpropagation-algorithm/

جهت تهیه کامل پکیج آموزشی شبکه عصبی به لینک زیر مراجعه کنید. 👇👇 👇👇
https://onlinebme.com/product/neural-networks-package/

🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
onlinebme
📺 دوره تخصصی پیاده سازی شبکه‌های عصبی در متلب مدرس: محمد نوری زاده چرلو فارغ التحصیل دانشگاه علم و صنعت تهران 4⃣ جلسه چهارم: پیاده‌سازی شبکه عصبی #پرسپترون_چندلایه با قانون یادگیری #پس_انتشار_خطا در متلب این جلسه مهمترین جلسه دوره تخصصی پیاده‌سازی شبکه‌های…
جزوه_خام_جلسه_چهارم_پرسپترون_چند.pdf
3 MB
📋 #جزوه_خام جلسه چهارم: پیاده‌سازی شبکه عصبی #پرسپترون_چندلایه با قانون یادگیری #پس_انتشار_خطا در متلب
💡دوستانی که ویدیوهارو تهیه کرده اند میتوانند قبل از مشاهده ویدیوی هر جلسه از جزوه خام پرینت گرفته و همراه با مدرس نکات مهم رو یادداشت کنند.

🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
onlinebme
📺 دوره تخصصی پیاده سازی شبکه‌های عصبی در متلب مدرس: محمد نوری زاده چرلو فارغ التحصیل دانشگاه علم و صنعت تهران 4⃣ جلسه چهارم: پیاده‌سازی شبکه عصبی پرسپترون چندلایه با قانون یادگیری پس انتشار خطا در متلب #پرسپترون_چندلایه ، #پس_انتشار_خطا #پروژه_عملی، #…
Media is too big
VIEW IN TELEGRAM
📺 دوره تخصصی پیاده سازی شبکه‌های عصبی در متلب
مدرس: محمد نوری زاده چرلو
فارغ التحصیل دانشگاه علم و صنعت تهران

4⃣ جلسه چهارم: پیاده سازی گام به گام پروژه پیش بینی میزان آلودگی هوا با استفاده از شبکه عصبی پرسپترون چندلایه با قانون یادگیری پس انتشار خطا در متلب

#پرسپترون_چندلایه ، #پس_انتشار_خطا #پروژه_عملی،
 #پیش_بینی_میزان_آلودگی_هوا
#رگرسیون

🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
Forwarded from onlinebme
☘️جهت دسترسی به مطالب آموزشی به لینکهای زیر مراجعه کنید👇👇

🔲▪️لینک ویدیوهای آموزشی اصول برنامه نویسی در متلب
https://t.me/onlinebme/2354
🔲جلسه 1: مقدمه-چرا باید متلب را یاد بگیریم؟
https://t.me/onlinebme/2306
▪️ جلسه 2: انواع m فایل نویسی در متلب
https://t.me/onlinebme/2308
🔲جلسه 3: کار با آرایه‌های عددی
https://t.me/onlinebme/2328
▪️جلسه 4: معرفی متغیرهای ثابت در متلب
https://t.me/onlinebme/2340
🔲جلسه 5: قوانین نقطه گذاری و اسم گذاری در متلب
https://t.me/onlinebme/2341
▪️جلسه 6: نحوه اضافه کردن تولباکس به متلب
https://t.me/onlinebme/2353
🔲جلسه 7: معرفی توابع پرکاربرد در متلب
https://t.me/onlinebme/2360
▪️جلسه 8: معرفی توابع پرکاربرد در متلب
#توابع گرد کردن اعداد اعشاری
#ceil #fix #round #floor
https://t.me/onlinebme/2376
▪️جلسه 9: ادامه معرفی توابع پرکاربرد در متلب
#ones #zeros #rand #randn #randi #mvnrnd #randperm
https://t.me/onlinebme/2407
🔲جلسه 10: معرفی توابع پرکاربرد sum mean eye diag
https://t.me/onlinebme/2410
▪️جلسه 11:معرفی توابع پرکاربرد min max input
https://t.me/onlinebme/2425
🔲جلسه 12:معرفی تابع repmat
https://t.me/onlinebme/2435
▪️جلسه 13: معرفی تابع sort
https://t.me/onlinebme/2436
🔲جلسه 14: معرفی توابع پرکاربرد size, length, numel
https://t.me/onlinebme/2492
▪️جلسه 15: معرفی تابع find
https://t.me/onlinebme/2493
🔲جلسه 16: دستورات شرطی در متلب
https://t.me/onlinebme/2494
▪️جلسه 17: حلقه ها در متلب
https://t.me/onlinebme/2517
🔲جلسه 18: رسم نمودار در متلب
https://t.me/onlinebme/2519

🔲▪️نحوه تبدیل فایل text، xcel و .dat به .mat در متلب
https://t.me/onlinebme/2374

🔲▪️نحوه دانلود داده از سایت #فیزیونت
https://t.me/onlinebme/2321

🔲▪️برنامه نویسی پایتون ( ویدیوهای آموزشی)
https://t.me/onlinebme/2394

🔲▪️مطالب آموزشی سال 97
https://t.me/onlinebme/2267

🔲▪️مطالب آموزشی سال 95-96
https://t.me/onlinebme/1894


🏢آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
Forwarded from onlinebme
لینک مباحث آموزش تخصصی واسط مغز و کامپیوتر
جلسه 1: مقدمه ای بر BCI
https://t.me/onlinebme/2203
جلسه 2: تصویر برادری عصبی کارکردی( MEG)
https://t.me/onlinebme/2207
جلسه سوم: روشهای ثبت فعالیت مغزی (الکتریکی- شیمیایی- متابولیکی)
🔹روشهای تصویربرداری جریان خون -روش تصویربردای
https://t.me/onlinebme/2211
جلسه چهارم: اصول پایه تصویربرداریMRI و FMRI
🔹 گردش خون و پاسخ به فعالیت مغزی
https://t.me/onlinebme/2212
جلسه پنجم: طیف نگاری کارکردی مادون قرمز نزدیکFNIRS و کاربرد آن در BCI (بخش اول)
https://t.me/onlinebme/2213
جلسه ششم: اصول پایه تصویربرداریMRI و FMRI
🔹کاربرد fMRI در BCI
https://t.me/onlinebme/2235
جلسه هفتم: طیف نگاری کارکردی مادون قرمز نزدیکFNIRS و کاربرد آن در BCI (بخش دوم)
https://t.me/onlinebme/2247
جلسه هشتم: کاربردهای واسط مغز و کامپیوتر BCI (بخش اول)
https://t.me/onlinebme/2280
جلسه 9: الکتروانسفالوگرافی (EEG)
https://t.me/onlinebme/2482
جلسه 10: الکتروانسفالوگرافی (EEG) مبتنی بر تصور حرکتی
https://t.me/onlinebme/2485
جلسه 11: الکتروانسفالوگرافی (EEG) مبتنی ssvep
https://t.me/onlinebme/2488

لینک مباحث آموزش تخصصی پردازش تصویر
اصول پایه پردازش تصاویر پزشکی
جلسه 1: چشم و مسیر بینایی انسان
https://t.me/onlinebme/2242
جلسه 2: مفاهیم پایه پردازش تصویر
🔹 نمونه برداری - کوانتیزه کردن تصویر
🔹تصویر رستری و برداری
🔹پیکسل- رزولوشن مکانی
🔹 مفهوم aliasing در تصویر
https://t.me/onlinebme/2243

جلسه 3: تصویر رنگی و فضاهای رنگی
🔹 تصویر رنگی- فضای رنگی- نویز
https://t.me/onlinebme/2253
جلسه 4: مبانی تصویربرداری التراسوند
https://t.me/onlinebme/2271
جلسه 5: رزولوشن تصویربرداری التراسوند
https://t.me/onlinebme/2287


ادامه جلسات هفته آینده در کانال و سایت قرار داده خواهد شد.
🏢آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
✔️ @onlinebme
Forwarded from onlinebme
جهت دسترسی به مطالب آموزشی به لینکهای زیر مراجعه کنید👇👇

برنامه نویسی پایتون ( ویدیوهای آموزشی)

https://t.me/onlinebme/2394

مطالب آموزشی سال 97

https://t.me/onlinebme/2267

مطالب آموزشی سال 95-96

https://t.me/onlinebme/1894

🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
✔️ @OnlineBME
مفاهیم پایه یادگیری ماشین و شناسایی الگو

👨‍💻مدرس: محمد نوری زاده چرلو

🔘 فرق بین هوش مصنوعی، یادگیری ماشین و یادگیری عمیق
https://t.me/onlinebme/2528

🔘 انواع روشهای یادگیری ماشین و کاربردهای آنها
https://t.me/onlinebme/2568

🔘 فرق بین کلاسبندی و رگرسیون
https://t.me/onlinebme/2594

🔘 مفهوم خوشه بندی
https://t.me/onlinebme/2595

🔘 مفهوم ویژگی، استخراج ویژگی و بردار ویژگی در یادگیری ماشین
https://t.me/onlinebme/2597

🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
onlinebme
📺 دوره تخصصی پیاده سازی شبکه‌های عصبی در متلب مدرس: محمد نوری زاده چرلو فارغ التحصیل دانشگاه علم و صنعت تهران 5⃣ نحوه تعیین نرخ یادگیری در قانون یادگیری پس انتشار خطا (بخش اول) #نرخ_یادگیری #ثابت #متغیر_با_زمان #search_then_converge #پرسپترون_چندلایه ،…
🔥 دوره تخصصی پیاده سازی شبکه‌های عصبی در متلب🔥

مدرس: محمد نوری زاده چرلو
فارغ التحصیل دانشگاه علم و صنعت تهران

5⃣ جلسه پنجم: نحوه تعیین نرخ یادگیری در قانون یادگیری پس انتشار خطا (بخش اول)

در جلسه چهارم #تئوری الگوریتم معروف #پس_انتشار_خطا را آموزش داده در متلب به صورت #مرحله_به_مرحله پیاده‌سازی کرده و چندین پروژه عملی از جلمه تشخیص سرطان سینه (پروژه عملی طبقه‌بندی) و پیش بینی میزان آلودگی هوا (پروژه عملی رگرسیون) با استفاده از شبکه عصبی پرسپترون چندلایه به صورت گام به گام در متلب پیاده‌سازی کردیم. الگوریتم پس انتشار خطا همانند LMS از گرادیان نزولی برای تنظیم وزنهای سیناپسی استفاده می‌کند. الگوریتم گرادیان نزولی در جهت شیب منفی خطا با یک گامی(نرخ یادگیری) حرکت می‌کند تا به مقدار بهینه برسد. مقدار بهینه جایی است که شیب خطا صفر شود. در حالت ایده آل با تعیین یک نرخ یادگیری مناسب می‌توان به خطای حداقل رسید. ولی در پروژه‌های عملی تعیین نرخ یادگیری بسیار سخت و چالش برانگیز است، زیرا که اگه نرخ یادگیری کم انتخاب شود، الگوریتم ممکن است در #مینیمم‌های_محلی گیر کند (زیرا که مینیمم محلی خواصی شبیه به مینیمم اصلی دارند و در این مناطق نیز شیب خطا صفر است و الگوریتم به اشتباه فکر می‌کند که به مقدار بهینه رسیده است) و در نتیجه شبکه به درستی آموزش نمی‌بیند و یا اگر نرخ یادگیری بزرگ انتخاب شود امکان دارد شبکه به حالت نوسانی و #ناپایدار برسد و در نتیجه همگرا نشده و آموزش نبیند. در این جلسه چالش‌های تعیین نرخ یادگیری را توضیح می‌دهیم و در ادامه چند روش ساده از قبیل ترم ممنتوم، search then converge و time variant  را برای حل این مسئله طبق مطالب کتاب ارائه می‌دهیم و در متلب پیاده‌سازی می‌کنیم و مزایا و معایب هر روش را توضیح می‌دهیم و در انتها توضیح می‌دهیم که روشهای ذکر شده با اینکه تا حدودی توانسته‌اند مشکل تعیین نرخ یادگیری را حل کنند ولی کافی نیستند و نیاز است که شرطهای دیگری نیز در تعیین #نرخ_یادگیری گنجانده شود.

برای درک بهتر مطالب ما در این جلسه نیز چندین مثال و #پروژه_عملی در متلب انجام داده‌ایم.

نکته: تمام مباحث‌این جلسه طبق مطالب فصل 6 کتاب Simon haykin است.

💡 جهت خرید جلسه پنجم به لینک زیر مراجعه کنید👇👇👇
https://onlinebme.com/product/learning-rate-determination-in-mlp/

💡جهت تهیه کامل پکیج آموزشی شبکه عصبی به لینک زیر مراجعه کنید. 👇👇 👇👇
https://onlinebme.com/product/neural-networks-package/

🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
onlinebme
🔥 دوره تخصصی پیاده سازی شبکه‌های عصبی در متلب🔥 مدرس: محمد نوری زاده چرلو فارغ التحصیل دانشگاه علم و صنعت تهران 5⃣ جلسه پنجم: نحوه تعیین نرخ یادگیری در قانون یادگیری پس انتشار خطا (بخش اول) در جلسه چهارم #تئوری الگوریتم معروف #پس_انتشار_خطا را آموزش…
جزوه_خام_جلسه_پنجم_بخش_اول_نحوه.pdf
1.2 MB
📋 #جزوه_خام جلسه پنجم: نحوه تعیین نرخ یادگیری در قانون یادگیری پس انتشار خطا

💡دوستانی که ویدیوهارو تهیه کرده اند میتوانند قبل از مشاهده ویدیوی هر جلسه از جزوه خام پرینت گرفته و همراه با مدرس نکات مهم رو یادداشت کنند.

🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme