This media is not supported in your browser
VIEW IN TELEGRAM
TorchIO
TorchIO - это библиотека для эффективного чтения, предварительной обработки, выборки, дополнения и записи 3D медицинских изображений в приложениях глубокого обучения, написанных на PyTorch, включая преобразования интенсивности и пространственные преобразования для дополнения и предварительной обработки данных. Преобразования включают типичные операции компьютерного зрения, такие как рандомные аффинные преобразования, а также специфические для данной области, такие как моделирование артефактов интенсивности из-за неоднородности магнитного поля МРТ или артефактов движения в k-пространстве.
Сайт
GitHub
Статья
#code #medicine #images #3d #ScientificML
TorchIO - это библиотека для эффективного чтения, предварительной обработки, выборки, дополнения и записи 3D медицинских изображений в приложениях глубокого обучения, написанных на PyTorch, включая преобразования интенсивности и пространственные преобразования для дополнения и предварительной обработки данных. Преобразования включают типичные операции компьютерного зрения, такие как рандомные аффинные преобразования, а также специфические для данной области, такие как моделирование артефактов интенсивности из-за неоднородности магнитного поля МРТ или артефактов движения в k-пространстве.
Сайт
GitHub
Статья
#code #medicine #images #3d #ScientificML
MEDIC
MEDIC - это большой набор данных классификации изображений из социальных сетей для гуманитарного реагирования, состоящий из 71 198 изображений для решения четырех различных задач. Он составлен из данных из нескольких источников (таких как CrisisMMD, AIDR и Damage Multimodal Dataset)
Датасет
#datasets #images #ScientifcML
MEDIC - это большой набор данных классификации изображений из социальных сетей для гуманитарного реагирования, состоящий из 71 198 изображений для решения четырех различных задач. Он составлен из данных из нескольких источников (таких как CrisisMMD, AIDR и Damage Multimodal Dataset)
Датасет
#datasets #images #ScientifcML
Sparse-MLP: A Fully-MLP Architecture with Conditional Computation
Mixture-of-Experts (MoE) с разреженными условными вычислениями - эффективная архитектура для масштабирования моделей attention на большее количество параметров.
Sparse-MLP - это по сути MLP-Mixer с разреженными слоями MoE. Подмножество dense блоков MLP-Mixer заменяется на разреженные (sparse) блоки. В каждом этом блоке применяется два этапа слоев MoE: один с экспертами MLP, смешивающими информацию внутри каналов по размеру патча изображения, другой с экспертами MLP, смешивающими информацию внутри патчей по размеру канала.
Кроме того, для снижения вычислительных затрат авторы используют слои Re-represent в каждом блоке Sparse. Эти слои предназначены для изменения масштаба представления изображений с помощью двух простых, но эффективных линейных преобразований.
На небольших задачах классификации изображений, т.е. Cifar10 и Cifar100 модель Sparse-MLP достигает лучшей производительности, чем базовые модели.
Статья
#mlp #images #conditional
Mixture-of-Experts (MoE) с разреженными условными вычислениями - эффективная архитектура для масштабирования моделей attention на большее количество параметров.
Sparse-MLP - это по сути MLP-Mixer с разреженными слоями MoE. Подмножество dense блоков MLP-Mixer заменяется на разреженные (sparse) блоки. В каждом этом блоке применяется два этапа слоев MoE: один с экспертами MLP, смешивающими информацию внутри каналов по размеру патча изображения, другой с экспертами MLP, смешивающими информацию внутри патчей по размеру канала.
Кроме того, для снижения вычислительных затрат авторы используют слои Re-represent в каждом блоке Sparse. Эти слои предназначены для изменения масштаба представления изображений с помощью двух простых, но эффективных линейных преобразований.
На небольших задачах классификации изображений, т.е. Cifar10 и Cifar100 модель Sparse-MLP достигает лучшей производительности, чем базовые модели.
Статья
#mlp #images #conditional
Смотрите какая крутая штука! Оказывается loss функцию можно показывать очень и очень красиво и артистично!
Больше крутых примеров 👉 https://losslandscape.com/gallery/
#images #generative #training
Больше крутых примеров 👉 https://losslandscape.com/gallery/
#images #generative #training
img2dataset
Програмка позволяет с легкостью превращать наборы url в ImageDataset. Обещают что за 20 часов на домашнем компе можно подгрузить и упаковать до 100 млн изображений.
Код
#datasets #images #multimodal
Програмка позволяет с легкостью превращать наборы url в ImageDataset. Обещают что за 20 часов на домашнем компе можно подгрузить и упаковать до 100 млн изображений.
Код
#datasets #images #multimodal
GitHub
GitHub - rom1504/img2dataset: Easily turn large sets of image urls to an image dataset. Can download, resize and package 100M urls…
Easily turn large sets of image urls to an image dataset. Can download, resize and package 100M urls in 20h on one machine. - rom1504/img2dataset
Zero-Shot Open Set Detection Based on a Pretrained Language-Vision Model
В задаче на классификацию неограниченных классов сэмплы известных классов (также называемых классами закрытого множества) используются для обучения классификатора. При тестировании классификатор может (1) отнести образцы известных классов к соответствующим классам и (2) определить образцы, которые не принадлежат ни к одному из известных классов (мы говорим, что они принадлежат к некоторым открытым классам).
В работе предлагается метод (ZO-CLIP) для решения проблемы открытой классификации. ZO-CLIP основывается на достижениях в области классификации Zero-Shot с помощью обучения мультимодальному представлению данных (multimodal representation). Сначала он расширяет предварительно обученную модель CLIP, обучая генератор текстовых описаний изображений поверх CLIP. При тестировании ZO-CLIP использует модель для генерации названий неизвестных классов-кандидатов для каждого тестового образца.
Статья
#images #CLIP #multimodal #zeroshot
В задаче на классификацию неограниченных классов сэмплы известных классов (также называемых классами закрытого множества) используются для обучения классификатора. При тестировании классификатор может (1) отнести образцы известных классов к соответствующим классам и (2) определить образцы, которые не принадлежат ни к одному из известных классов (мы говорим, что они принадлежат к некоторым открытым классам).
В работе предлагается метод (ZO-CLIP) для решения проблемы открытой классификации. ZO-CLIP основывается на достижениях в области классификации Zero-Shot с помощью обучения мультимодальному представлению данных (multimodal representation). Сначала он расширяет предварительно обученную модель CLIP, обучая генератор текстовых описаний изображений поверх CLIP. При тестировании ZO-CLIP использует модель для генерации названий неизвестных классов-кандидатов для каждого тестового образца.
Статья
#images #CLIP #multimodal #zeroshot
PASS - An ImageNet replacement
PASS - это крупномасштабный набор изображений, в котором нет людей и который можно использовать для обучения, при этом значительно снижая требования к конфиденциальности.
Набор данных географически разнообразен, и почти треть изображений содержит геопривязку.
Сайт
Статья
#images #datasets
PASS - это крупномасштабный набор изображений, в котором нет людей и который можно использовать для обучения, при этом значительно снижая требования к конфиденциальности.
Набор данных географически разнообразен, и почти треть изображений содержит геопривязку.
Сайт
Статья
#images #datasets
ResNet strikes back: An improved training procedure in timm
Влиятельный ResNet, разработанный He et al., остается золотым стандартом архитектуры в многочисленных научных публикациях (98к цитирований). ResNetы обычно служат в качестве базовой архитектуры с которой сравнивается работа какой-нибудь новой сетки. Тем не менее, с момента появления архитектуры ResNet в 2015 году произошел значительный прогресс в области лучших методов обучения нейронных сетей (например, новые методы оптимизации и аугментации данных).
В этой статье авторы заново оценивают производительность ванильной ResNet-50 при обучении с помощью новой процедуры, которая учитывает достижения за последние 6 лет. И конечно же добиваются лучшей точности.
Статья
Код
#images #training
Влиятельный ResNet, разработанный He et al., остается золотым стандартом архитектуры в многочисленных научных публикациях (98к цитирований). ResNetы обычно служат в качестве базовой архитектуры с которой сравнивается работа какой-нибудь новой сетки. Тем не менее, с момента появления архитектуры ResNet в 2015 году произошел значительный прогресс в области лучших методов обучения нейронных сетей (например, новые методы оптимизации и аугментации данных).
В этой статье авторы заново оценивают производительность ванильной ResNet-50 при обучении с помощью новой процедуры, которая учитывает достижения за последние 6 лет. И конечно же добиваются лучшей точности.
Статья
Код
#images #training
Patches are all you need? 🤷
«Первая нейронная сеть, которая достигает 2х целей одновременно - 80++% на ImageNet Top-1 и влезает в один твит»
Сама нейронка - это очередная вариация на тему Conv-Mixers про которые я писал тут.
Авторы пока не известны (статья ещё на ревью), но про то насколько это круто высказались многие известные исследователи, включая Andrej Karpathy (Head of AI in Tesla).
Статья
#images
«Первая нейронная сеть, которая достигает 2х целей одновременно - 80++% на ImageNet Top-1 и влезает в один твит»
Сама нейронка - это очередная вариация на тему Conv-Mixers про которые я писал тут.
Авторы пока не известны (статья ещё на ревью), но про то насколько это круто высказались многие известные исследователи, включая Andrej Karpathy (Head of AI in Tesla).
Статья
#images
Causal ImageNet: How to discover spurious features in Deep Learning?
Часто, нейросети обученные на казалось бы больших датасетах типа ImageNet, плохо работают в реальном мире. Авторы исследования, считают что проблема может крыться в том, что сети уделяют слишком много внимания входным признакам, которые причинно не связаны с истинной меткой класса (например хотим предсказать кошку, а сеть зачем то ещё и фон учитывает).
Фокусируясь на классификации изображений, авторы определяют набор причинных визуальных признаков (всегда являются частью объекта) и набор ложных признаков (те, которые, так или иначе связаны с объектом, но не являются его частью. Например, признак «пальцы'' для класса «повязка'').
Авторы представляют набор данных Causal Imagenet, содержащий маски причинных и ложных признаков для большого набора сэмплов из Imagenet.
Данные пока не выложили, обновлю пост когда появятся.
📎Статья
#causality #datasets #images
Часто, нейросети обученные на казалось бы больших датасетах типа ImageNet, плохо работают в реальном мире. Авторы исследования, считают что проблема может крыться в том, что сети уделяют слишком много внимания входным признакам, которые причинно не связаны с истинной меткой класса (например хотим предсказать кошку, а сеть зачем то ещё и фон учитывает).
Фокусируясь на классификации изображений, авторы определяют набор причинных визуальных признаков (всегда являются частью объекта) и набор ложных признаков (те, которые, так или иначе связаны с объектом, но не являются его частью. Например, признак «пальцы'' для класса «повязка'').
Авторы представляют набор данных Causal Imagenet, содержащий маски причинных и ложных признаков для большого набора сэмплов из Imagenet.
Данные пока не выложили, обновлю пост когда появятся.
📎Статья
#causality #datasets #images
Feature extraction in torchvision
В обновлении torchvision (популярная надстройка к PyTorch) появились зачатки функционала Explainable AI (#XAI, запоминайте сокращение, будем его слышать все чаще и чаще).
Теперь, с помощью функции «из коробки», можно строить карты активации нейронов для сверточных сетей (не то что бы раньше было нельзя, но стало сильно удобнее).
🔭 Разбор и туториал
#explainability #images
В обновлении torchvision (популярная надстройка к PyTorch) появились зачатки функционала Explainable AI (#XAI, запоминайте сокращение, будем его слышать все чаще и чаще).
Теперь, с помощью функции «из коробки», можно строить карты активации нейронов для сверточных сетей (не то что бы раньше было нельзя, но стало сильно удобнее).
🔭 Разбор и туториал
#explainability #images
Image Manipulation with Only Pretrained StyleGAN
StyleGAN позволяет манипулировать и редактировать изображения благодаря своему обширному латентному пространству.
В данной работе, авторы показывают, что с помощью предварительно обученного StyleGAN вместе с некоторыми операциями, без какой-либо дополнительной архитектуры, можно смешивать изображения, генерировать панорамы, применять стили и много другое. Look mum, no clip!
💻 Colab
📎 Статья
🖥 Код
#gan #images
StyleGAN позволяет манипулировать и редактировать изображения благодаря своему обширному латентному пространству.
В данной работе, авторы показывают, что с помощью предварительно обученного StyleGAN вместе с некоторыми операциями, без какой-либо дополнительной архитектуры, можно смешивать изображения, генерировать панорамы, применять стили и много другое. Look mum, no clip!
💻 Colab
📎 Статья
🖥 Код
#gan #images
This media is not supported in your browser
VIEW IN TELEGRAM
EditGAN: High-Precision Semantic Image Editing
NVidia продолжает наступать на пятки компании Adobe, предложив EditGAN. Этот метод, позволяет пользователям редактировать изображения.
EditGAN может манипулировать изображениями с беспрецедентным уровнем детализации и свободы, сохраняя при этом полное качество изображения.
EditGAN - это первая система редактирования изображений на основе GAN, которая одновременно (i) обеспечивает очень высокую точность редактирования, (ii) требует очень мало аннотированных обучающих данных (и не полагается на внешние классификаторы), (iii) может работать интерактивно в реальном времени, (iv) обеспечивает простую композицию нескольких правок, (v) и работает на реальных встроенных, сгенерированных GAN и даже внедоменных изображениях.
код обещают soon
🖥 Проект
📎 Статья
#GAN #editing #images
NVidia продолжает наступать на пятки компании Adobe, предложив EditGAN. Этот метод, позволяет пользователям редактировать изображения.
EditGAN может манипулировать изображениями с беспрецедентным уровнем детализации и свободы, сохраняя при этом полное качество изображения.
EditGAN - это первая система редактирования изображений на основе GAN, которая одновременно (i) обеспечивает очень высокую точность редактирования, (ii) требует очень мало аннотированных обучающих данных (и не полагается на внешние классификаторы), (iii) может работать интерактивно в реальном времени, (iv) обеспечивает простую композицию нескольких правок, (v) и работает на реальных встроенных, сгенерированных GAN и даже внедоменных изображениях.
код обещают soon
🖥 Проект
📎 Статья
#GAN #editing #images
This media is not supported in your browser
VIEW IN TELEGRAM
ProsePainter
Создавайте образы, рисуя словами.
ProsePainter сочетает в себе рисование руками с оптимизацией изображения в реальном времени с помощью машинного обучения. Просто скажите, что вы хотите, и выделите нужную область.
🖥 Код
#CLIP #images #multimodal
Создавайте образы, рисуя словами.
ProsePainter сочетает в себе рисование руками с оптимизацией изображения в реальном времени с помощью машинного обучения. Просто скажите, что вы хотите, и выделите нужную область.
🖥 Код
#CLIP #images #multimodal
Masked Autoencoders Are Scalable Vision Learners
Ещё одна идея, которая казалось бы была на поверхности, and yet… Берём картиночный автоэнкодер, делим картинку на патчи, прячем их в случайном порядке, и просим декодер восстановить изображение (в режиме self-supervised).
Авторы (Facebook/Meta AI), обнаружили, что скрытие большой части входного изображения, например, 75%, дает нетривиальную и осмысленную задачу для self-supervised обучения. Оказалось, что в такой формулировке, автоэнкодер обучается в ~3 раза быстрее (чем если бы мы учили на изображениях без масок).
Более того, оказалось, что если к такому обученному автоэнкодеру прикрутить голову на классификацию (например), то она будет показывать SOTA результаты. Так же, авторы показывают, что при масштабировании датасета, результаты только улучшаются.
📎 Статья
🖥 Код (не официальный)
#SSL #autoencoders #images
Ещё одна идея, которая казалось бы была на поверхности, and yet… Берём картиночный автоэнкодер, делим картинку на патчи, прячем их в случайном порядке, и просим декодер восстановить изображение (в режиме self-supervised).
Авторы (Facebook/Meta AI), обнаружили, что скрытие большой части входного изображения, например, 75%, дает нетривиальную и осмысленную задачу для self-supervised обучения. Оказалось, что в такой формулировке, автоэнкодер обучается в ~3 раза быстрее (чем если бы мы учили на изображениях без масок).
Более того, оказалось, что если к такому обученному автоэнкодеру прикрутить голову на классификацию (например), то она будет показывать SOTA результаты. Так же, авторы показывают, что при масштабировании датасета, результаты только улучшаются.
📎 Статья
🖥 Код (не официальный)
#SSL #autoencoders #images