AI Для Всех
12.8K subscribers
1.18K photos
153 videos
10 files
1.38K links
Канал, в котором мы говорим про искусственный интеллект простыми словами

Главный редактор и по рекламе: @crimeacs

Иногда пишут в канал: @GingerSpacetail, @innovationitsme
Download Telegram
🤯 wav2CLIP

Новый метод обучения аудиопредставлений путем дистилляции из контрастивного предварительного обучения языку и изображению (CLIP).

Авторы оценивают Wav2CLIP на различных аудиозадачах, включая классификацию, поиск и генерацию, и показывают, что Wav2CLIP превосходит общедоступные алгоритмы предварительного обучения audio representation.

Wav2CLIP проецирует аудио в общее пространство эмбедингов с изображениями и текстом, что позволяет использовать его в мультимодальных задачах, таких как классификация zero-shot и кросс-модальный поиск. Более того, Wav2CLIP требуется всего ~10% от данных необходимых для supervised learning.

📎 Статья
🖥 Код

#clip #audio #video #multimodal
This media is not supported in your browser
VIEW IN TELEGRAM
Квантовые симуляции NFT

Кибер-панк подъехал откуда не ждали. Умельцы додумались продавать квантовые симуляции как NFT. Надо видимо волны от землетрясений тоже в NFT заминтить. Ну а чего?

Показывают тут
SciCap: Generating Captions for Scientific Figures

Исследователи используют рисунки (figures) для передачи богатой, сложной информации в научных статьях. Подписи к этим рисункам имеют решающее значение для эффективной передачи информации. Однако в научных статьях часто встречаются низкокачественные подписи к рисункам, что может снизить уровень их понимания.

Что бы начать с этой проблемой справляться нейронными методами, выпустили SCICAP - крупномасштабный набор данных с подписями к рисункам. В основном используют рисунки из статей arXiv по информатике, опубликованных в период с 2010 по 2020 год. SCICAP содержит более двух миллионов рисунков, извлеченных из более чем 290 000 статей.

Боюсь что подписи все равно генерировать будет сложно без текста статьи, но что-то мультимодальное наверное в ближайшее время справится и с такой задачей.

📎 Статья
🗂 Данные

#ScientificML #captioning #datasets
Вышел большой обзор про ML в науке

В этом обзорном докладе обсуждаются приложения и методы быстрого машинного обучения (БМО) в науке - концепцию интеграции мощных методов БМО в цикл обработки экспериментальных данных в реальном времени для ускорения научных открытий.
Обзор охватывает три основных направления: приложения быстрого ML в ряде научных областей; методы обучения и реализации производительных и ресурсоэффективных алгоритмов ML; вычислительные архитектуры, платформы и технологии для развертывания этих алгоритмов.

Этот обзор призван продемонстрировать множество примеров и вдохновить на научные открытия с помощью ML.

📎 Статья

#ScientificML #physics
This media is not supported in your browser
VIEW IN TELEGRAM
Unidentified Video Objects

UVO - это новый бенчмарк для сегментации объектов в видео с открытым миром, не зависящей от класса. Помимо смещения фокуса проблемы в сторону открытого мира, UVO значительно больше (примерно в 8 раз больше видео по сравнению с DAVIS, и в 7 раз больше по сравнению с YouTube-VOS и YouTube-VIS).

UVO также является более сложным бенчмарком, поскольку включает в себя множество видео с переполненными сценами и сложными фоновыми движениями. Некоторые основные моменты датасета включают:

Качественные, плотно аннотированные маски сэмлов.

Открытый мир: аннотирование всех объектов в каждом видео, в среднем 13,5 объектов на видео

Разнообразные категории объектов: 57% объектов не охватываются категориями COCO

📎 Статья
🗂 Датасет

#segmentation #datasets #video
Forwarded from Sberloga (Alexander C)
🚀 @SBERLOGA онлайн доклад по биоинформатике :
👨‍🔬 Александр Ташкеев (University of Liege, Animal Genomics Lab) "Базовые аспекты производства и моделирования данных РНК-секвенирования одиночных клеток"
⌚️ Пятница 29 октября, 18.00 по Москве

Поговорим про РНК-секвенирование одиночных клеток на примере коммерческого протокола 10x Genomics, самого распространенного на сегодняшний день.
Сначала рассмотрим экспериментальную часть в объеме, нужном для статистического моделирования таких данных и понимания возможных артефактов.
Потом обсудим разные подходы к моделированию - более и менее knowledge-driven, их возможные плюсы и минусы.

Ссылка на зум будет доступна через тг чат https://t.me/sberlogabio ближе к началу
AI4Mars

Мы с вами можем помочь обучить алгоритм искусственного интеллекта распознавать научные особенности на снимках, сделанных марсоходом NASA Perseverance.

ИИ обладает огромным потенциалом для помощи в изучения Вселенной космическими аппаратами. В связи с чем, предлагается размечать снимки на которых есть интересные особенности (например камне, почву и тп).

Проект, получивший название AI4Mars, является продолжением прошлогоднего проекта, в котором использовались снимки, полученные марсоходом NASA Curiosity.

Поразмечать марсианские пейзажи можно тут.

#ScientificML #datasets #training
This media is not supported in your browser
VIEW IN TELEGRAM
Braxlines

Braxlines - это серия минималистичных реализаций для формулировок задач RL, выходящих за рамки простой максимизации вознаграждения. Он построен на основе JAX физического симулятора Brax, предназначенного для использования на GPU и прочих ускорителях. Brax эффективен как для одноядерного обучения, так и для массивно-параллельного моделирования.

Обучение политикам с помощью Braxlines занимает менее нескольких минут. Brax работает со скоростью миллионы физических шагов в секунду на TPU (доступно в колабе)

💻 Код и Colab
📎 Статья

#RL
Ученые - Норм!

На канале «Русские норм!» вышел первый эпизод спецпроекта «Ученые — норм!». Это серия выпусков про людей, которые двигают науку, да и все человечество, вперед.
Первый выпуск — про лингвистику. Многие считают, что лингвистика — это наука, которую сложно приложить к реальной жизни, но это вовсе не так.
Ученые из «Яндекса» Иван Ямщиков и Андрей Малинин учат нейросети генерировать тексты и строят модели, которые могут оценить границы собственных знаний и сказать, что чего-то не понимают. Нейролингвист Ольга Драгой исследует нарушения речи у детей и помогает хирургам проводить операции на мозге. А доцент Школы лингвистики ВШЭ Борис Орехов изучает поэтическую речь. Они рассказали нам о том, насколько разной бывает лингвистика, о своем пути в науку, о главных качествах ученого и о том, почему вообще наука — это интересно. Помимо науки, наши герои увлекаются искусством и спортом, они взбираются на горные вершины, катаются на мотоциклах, снимают кино, пишут подкасты и коллекционируют аналоговые фотоаппараты.

#ScientificML #linguistics
This media is not supported in your browser
VIEW IN TELEGRAM
👾Space Invaders in Jupyter

Обучение моделек - это долго и нудно!

Лучше, пока модель учится, поиграйте в соревновательную игру "Космические захватчики" прямо в своём блокноте.

Проверьте, сможете ли вы попасть на вершину лидерборда (хотя тут у ребят и девчат обучающих огроменные модели явно есть преимущество).

Как поставить
This media is not supported in your browser
VIEW IN TELEGRAM
Drawdata ✏️

Для тех кто преподаёт. Это небольшое приложение на питоне позволяет рисовать датасеты в блокноте Jupyter (и в Colab тоже). Мне кажется эта штука может быть очень полезна при обучении алгоритмам машинного обучения.

🖥 Код

#teaching #datasets
This media is not supported in your browser
VIEW IN TELEGRAM
🦹 Лекция StyleGAN 1-2-3 Speed Dive от самого L4RZ

Вы и так знаете StyleGAN кудесника из твиттера L4RZ по косплей моделям, женщинам-кошкам (неко-тян) из моих постов и постов Denis Sexy IT и эйай ньюз (первый, второй), так что в представлении мастер не нуждается.

В эту субботу в 14-00 состоится нечто невероятное! L4RZ решил сделать 2х часовую лекцию по StyleGAN 1, 2, Ada, даже StyleGAN3

▫️GAN
- What is a GAN? Generator VS Discriminator
- Milestone works (Goodfellow, Mooch, Karras)
▫️StyleGAN 1-2-3
- Issues encountered (mode collapse, positional artifacts)
- StyleGAN 1 -> 2 -> ada -> 3
▫️Practical Aspects
- Training
- Sampling
- Visualizing
- Cool projects

🎓 Когда? 14:00 (эта суббота) 30 октября
🎬 Где? YouTube канал Трансформер
👉 регистрация на лекцию L4RZ: StyleGAN 1-2-3 Speed Dive | ссылки вышлем на почту в пт в 21:00 и в сб в 12:00

p.s.: Саша Грей приглашает тебя на лекцию и найти ее самому по текстовому описанию в пространстве гана L4RZ
🔮колаб StyleGAN2/3+CLIP
WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing (Microsoft)

Self-supervised learning (SSL) уже достигло больших успехов в распознавании речи. При этом в для других задач обработки речи были предприняты лишь ограниченные попытки. Поскольку речевой сигнал содержит многогранную информацию, включая личность диктора, паралингвистику, содержание речи и т.д., обучение универсальным представлениям для всех речевых задач является сложной задачей.

В этой статье авторы предлагают новую модель WavLM для решения речевых задач полного стека. WavLM построена на основе архитектуры HuBERT с акцентом на моделирование речевого контента и сохранение идентичности диктора.

📎 Статья
🖥 Код

#SSL #signals #speech #audio
Теперь вместо FAANG, можно говорить MANGA. The geeks will inherit the Earth, indeed

Источник
AugMax: Adversarial Composition of Random Augmentations for Robust Training

Аугментация (дополнение) данных - это простой и эффективный способ улучшения генерализации глубоких нейронных сетей.

Авторы предлагают схему аугментации данных, названную AugMax (отсылка к AugMix). AugMax сначала случайным образом выбирает несколько операторов дополнения, а затем обучается состязательной смеси выбранных операторов.

📎 Статья
🖥 Код

#augmentation #training
Forwarded from N + 1
​​В сентябре математик Мартин Доуд выложил в открытый доступ свое решение одной из самых известных «задач тысячелетия» — доказательство P≠NP. Но торжества по этому поводу длились недолго. Задача, судя по всему, устояла: после ряда критических замечаний к работе Доуд снял ее с публикации. Математик Владимир Потапов рассказывает о задаче, которой бросил вызов его американский коллега, и том, что, по-видимому, пошло не так

n-pl.us/31093/t
MedMNIST v2 👩‍⚕️

Вышла большая MNIST-подобная коллекция стандартизированных биомедицинских изображений, включающая 12 наборов данных для 2D и 6 наборов данных для 3D. Все изображения предварительно обработаны в формат 28 x 28 (2D) или 28 x 28 x 28 (3D) с соответствующими классификационными метками.

Охватывая основные модальности данных в биомедицинских изображениях, MedMNIST v2 предназначен для выполнения классификации на легких 2D и 3D изображениях с различными масштабами данных (от 100 до 100 000) и разнообразными задачами (бинарные/многоклассовые, порядковые регрессии и мульти-метки). Полученный набор данных, состоящий из 708 069 2D-изображений и 10 214 3D-изображений в целом, может помочь в многочисленных исследовательских и образовательных целях в области анализа биомедицинских изображений, компьютерного зрения и машинного обучения.

Про предыдущую версию мы писали тут (оказалось что мы писали про второй medmnist, как мне верно напомнили).

🗂 Датасет
📎 Статья

#ScientificML #datasets #medicine #3d
Forwarded from Denis Sexy IT 🤖
OpenAI продолжает решать все новые и новые задачи своими нейронками, в этот раз они пришли за домашкой по математике – натренили нейронку которая умеет успешно решать 90% математических задачек.

Вот пример на основе реальной задачи из учебника, по ссылке есть больше примеров:
>У Энтони было 50 карандашей. Он отдал 1/2 своих карандашей Брэндону, а 3/5 оставшихся карандашей отдал Чарли. Оставшиеся карандаши он оставил себе. Сколько карандашей оставил себе Энтони?

Пока вы думаете, нейронка уже решила:
>Энтони отдал 50/2=25 карандашей Брэндону.
После того, как Брэндон отдал 25 карандашей, у Энтони осталось 50-25= 25 карандашей.
Энтони дал 25*3/5=15 карандашей Чарли.
После того, как Чарли отдал 15 карандашей, у Энтони осталось 25-15= 10 карандашей.
Поэтому Энтони оставил себе 10 карандашей.

Что же, ждем когда OpenAI придет за физикой и изобретет холодный синтез 🌚
This media is not supported in your browser
VIEW IN TELEGRAM
Какие задачи должны обучаться вместе в многозадачных нейронных сетях?

Многие модели машинного обучения сосредоточены на обучении одной задаче за раз (например, языковые модели предсказывают вероятность следующего слова). Однако не сложно себе представить, одновременное обучение на нескольких связанных задачах может привести к лучшим результатам по каждой из них.

Например, при игре в пинг-понг часто бывает полезно оценить расстояние, вращение и предстоящую траекторию мяча для того, чтобы скорректировать свою руку и выстроить замах. Хотя каждая из этих задач уникальна, понимание того где мяч сейчас и как он крутится, вероятно, поможет вам лучше предсказывать его траекторию и наоборот.

Google придумал механизм, для изучения динамики обучения многозадачных сетей, что позволяет учить многозадачные сети лучше.

🔭 Блог-пост
📎 Статья

#training #multitasking