This is Heloween
На просторах твиттера откопал колабчик, который позволяет преобразовать любое лицо во что угодно с помощью текста (CLIP). Самое то для следующих выходных 🎃
💻 Colab
#gan #text2image #CLIP
На просторах твиттера откопал колабчик, который позволяет преобразовать любое лицо во что угодно с помощью текста (CLIP). Самое то для следующих выходных 🎃
💻 Colab
#gan #text2image #CLIP
🤯 wav2CLIP
Новый метод обучения аудиопредставлений путем дистилляции из контрастивного предварительного обучения языку и изображению (CLIP).
Авторы оценивают Wav2CLIP на различных аудиозадачах, включая классификацию, поиск и генерацию, и показывают, что Wav2CLIP превосходит общедоступные алгоритмы предварительного обучения audio representation.
Wav2CLIP проецирует аудио в общее пространство эмбедингов с изображениями и текстом, что позволяет использовать его в мультимодальных задачах, таких как классификация zero-shot и кросс-модальный поиск. Более того, Wav2CLIP требуется всего ~10% от данных необходимых для supervised learning.
📎 Статья
🖥 Код
#clip #audio #video #multimodal
Новый метод обучения аудиопредставлений путем дистилляции из контрастивного предварительного обучения языку и изображению (CLIP).
Авторы оценивают Wav2CLIP на различных аудиозадачах, включая классификацию, поиск и генерацию, и показывают, что Wav2CLIP превосходит общедоступные алгоритмы предварительного обучения audio representation.
Wav2CLIP проецирует аудио в общее пространство эмбедингов с изображениями и текстом, что позволяет использовать его в мультимодальных задачах, таких как классификация zero-shot и кросс-модальный поиск. Более того, Wav2CLIP требуется всего ~10% от данных необходимых для supervised learning.
📎 Статья
🖥 Код
#clip #audio #video #multimodal
This media is not supported in your browser
VIEW IN TELEGRAM
Квантовые симуляции NFT
Кибер-панк подъехал откуда не ждали. Умельцы додумались продавать квантовые симуляции как NFT. Надо видимо волны от землетрясений тоже в NFT заминтить. Ну а чего?
Показывают тут
Кибер-панк подъехал откуда не ждали. Умельцы додумались продавать квантовые симуляции как NFT. Надо видимо волны от землетрясений тоже в NFT заминтить. Ну а чего?
Показывают тут
SciCap: Generating Captions for Scientific Figures
Исследователи используют рисунки (figures) для передачи богатой, сложной информации в научных статьях. Подписи к этим рисункам имеют решающее значение для эффективной передачи информации. Однако в научных статьях часто встречаются низкокачественные подписи к рисункам, что может снизить уровень их понимания.
Что бы начать с этой проблемой справляться нейронными методами, выпустили SCICAP - крупномасштабный набор данных с подписями к рисункам. В основном используют рисунки из статей arXiv по информатике, опубликованных в период с 2010 по 2020 год. SCICAP содержит более двух миллионов рисунков, извлеченных из более чем 290 000 статей.
Боюсь что подписи все равно генерировать будет сложно без текста статьи, но что-то мультимодальное наверное в ближайшее время справится и с такой задачей.
📎 Статья
🗂 Данные
#ScientificML #captioning #datasets
Исследователи используют рисунки (figures) для передачи богатой, сложной информации в научных статьях. Подписи к этим рисункам имеют решающее значение для эффективной передачи информации. Однако в научных статьях часто встречаются низкокачественные подписи к рисункам, что может снизить уровень их понимания.
Что бы начать с этой проблемой справляться нейронными методами, выпустили SCICAP - крупномасштабный набор данных с подписями к рисункам. В основном используют рисунки из статей arXiv по информатике, опубликованных в период с 2010 по 2020 год. SCICAP содержит более двух миллионов рисунков, извлеченных из более чем 290 000 статей.
Боюсь что подписи все равно генерировать будет сложно без текста статьи, но что-то мультимодальное наверное в ближайшее время справится и с такой задачей.
📎 Статья
🗂 Данные
#ScientificML #captioning #datasets
Вышел большой обзор про ML в науке
В этом обзорном докладе обсуждаются приложения и методы быстрого машинного обучения (БМО) в науке - концепцию интеграции мощных методов БМО в цикл обработки экспериментальных данных в реальном времени для ускорения научных открытий.
Обзор охватывает три основных направления: приложения быстрого ML в ряде научных областей; методы обучения и реализации производительных и ресурсоэффективных алгоритмов ML; вычислительные архитектуры, платформы и технологии для развертывания этих алгоритмов.
Этот обзор призван продемонстрировать множество примеров и вдохновить на научные открытия с помощью ML.
📎 Статья
#ScientificML #physics
В этом обзорном докладе обсуждаются приложения и методы быстрого машинного обучения (БМО) в науке - концепцию интеграции мощных методов БМО в цикл обработки экспериментальных данных в реальном времени для ускорения научных открытий.
Обзор охватывает три основных направления: приложения быстрого ML в ряде научных областей; методы обучения и реализации производительных и ресурсоэффективных алгоритмов ML; вычислительные архитектуры, платформы и технологии для развертывания этих алгоритмов.
Этот обзор призван продемонстрировать множество примеров и вдохновить на научные открытия с помощью ML.
📎 Статья
#ScientificML #physics
This media is not supported in your browser
VIEW IN TELEGRAM
Unidentified Video Objects
UVO - это новый бенчмарк для сегментации объектов в видео с открытым миром, не зависящей от класса. Помимо смещения фокуса проблемы в сторону открытого мира, UVO значительно больше (примерно в 8 раз больше видео по сравнению с DAVIS, и в 7 раз больше по сравнению с YouTube-VOS и YouTube-VIS).
UVO также является более сложным бенчмарком, поскольку включает в себя множество видео с переполненными сценами и сложными фоновыми движениями. Некоторые основные моменты датасета включают:
✅ Качественные, плотно аннотированные маски сэмлов.
✅ Открытый мир: аннотирование всех объектов в каждом видео, в среднем 13,5 объектов на видео
✅ Разнообразные категории объектов: 57% объектов не охватываются категориями COCO
📎 Статья
🗂 Датасет
#segmentation #datasets #video
UVO - это новый бенчмарк для сегментации объектов в видео с открытым миром, не зависящей от класса. Помимо смещения фокуса проблемы в сторону открытого мира, UVO значительно больше (примерно в 8 раз больше видео по сравнению с DAVIS, и в 7 раз больше по сравнению с YouTube-VOS и YouTube-VIS).
UVO также является более сложным бенчмарком, поскольку включает в себя множество видео с переполненными сценами и сложными фоновыми движениями. Некоторые основные моменты датасета включают:
✅ Качественные, плотно аннотированные маски сэмлов.
✅ Открытый мир: аннотирование всех объектов в каждом видео, в среднем 13,5 объектов на видео
✅ Разнообразные категории объектов: 57% объектов не охватываются категориями COCO
📎 Статья
🗂 Датасет
#segmentation #datasets #video
Forwarded from Sberloga (Alexander C)
🚀 @SBERLOGA онлайн доклад по биоинформатике :
👨🔬 Александр Ташкеев (University of Liege, Animal Genomics Lab) "Базовые аспекты производства и моделирования данных РНК-секвенирования одиночных клеток"
⌚️ Пятница 29 октября, 18.00 по Москве
Поговорим про РНК-секвенирование одиночных клеток на примере коммерческого протокола 10x Genomics, самого распространенного на сегодняшний день.
Сначала рассмотрим экспериментальную часть в объеме, нужном для статистического моделирования таких данных и понимания возможных артефактов.
Потом обсудим разные подходы к моделированию - более и менее knowledge-driven, их возможные плюсы и минусы.
Ссылка на зум будет доступна через тг чат https://t.me/sberlogabio ближе к началу
👨🔬 Александр Ташкеев (University of Liege, Animal Genomics Lab) "Базовые аспекты производства и моделирования данных РНК-секвенирования одиночных клеток"
⌚️ Пятница 29 октября, 18.00 по Москве
Поговорим про РНК-секвенирование одиночных клеток на примере коммерческого протокола 10x Genomics, самого распространенного на сегодняшний день.
Сначала рассмотрим экспериментальную часть в объеме, нужном для статистического моделирования таких данных и понимания возможных артефактов.
Потом обсудим разные подходы к моделированию - более и менее knowledge-driven, их возможные плюсы и минусы.
Ссылка на зум будет доступна через тг чат https://t.me/sberlogabio ближе к началу
Если увидите какую-то странную рекламу - имейте ввиду, что я к ней не имею никакого отношения, и повлиять на неё я никак не могу.
Свою собственную рекламу я помечаю тегом #реклама
Свою собственную рекламу я помечаю тегом #реклама
Meduza
Павел Дуров заявил о запуске официальной рекламы в Telegram
Скоро в телеграм-каналах появятся рекламные сообщения, которые будет размещать администрация мессенджера. Об этом рассказал создатель Telegram Павел Дуров.
AI4Mars
Мы с вами можем помочь обучить алгоритм искусственного интеллекта распознавать научные особенности на снимках, сделанных марсоходом NASA Perseverance.
ИИ обладает огромным потенциалом для помощи в изучения Вселенной космическими аппаратами. В связи с чем, предлагается размечать снимки на которых есть интересные особенности (например камне, почву и тп).
Проект, получивший название AI4Mars, является продолжением прошлогоднего проекта, в котором использовались снимки, полученные марсоходом NASA Curiosity.
Поразмечать марсианские пейзажи можно тут.
#ScientificML #datasets #training
Мы с вами можем помочь обучить алгоритм искусственного интеллекта распознавать научные особенности на снимках, сделанных марсоходом NASA Perseverance.
ИИ обладает огромным потенциалом для помощи в изучения Вселенной космическими аппаратами. В связи с чем, предлагается размечать снимки на которых есть интересные особенности (например камне, почву и тп).
Проект, получивший название AI4Mars, является продолжением прошлогоднего проекта, в котором использовались снимки, полученные марсоходом NASA Curiosity.
Поразмечать марсианские пейзажи можно тут.
#ScientificML #datasets #training
This media is not supported in your browser
VIEW IN TELEGRAM
Braxlines
Braxlines - это серия минималистичных реализаций для формулировок задач RL, выходящих за рамки простой максимизации вознаграждения. Он построен на основе JAX физического симулятора Brax, предназначенного для использования на GPU и прочих ускорителях. Brax эффективен как для одноядерного обучения, так и для массивно-параллельного моделирования.
Обучение политикам с помощью Braxlines занимает менее нескольких минут. Brax работает со скоростью миллионы физических шагов в секунду на TPU (доступно в колабе)
💻 Код и Colab
📎 Статья
#RL
Braxlines - это серия минималистичных реализаций для формулировок задач RL, выходящих за рамки простой максимизации вознаграждения. Он построен на основе JAX физического симулятора Brax, предназначенного для использования на GPU и прочих ускорителях. Brax эффективен как для одноядерного обучения, так и для массивно-параллельного моделирования.
Обучение политикам с помощью Braxlines занимает менее нескольких минут. Brax работает со скоростью миллионы физических шагов в секунду на TPU (доступно в колабе)
💻 Код и Colab
📎 Статья
#RL
Ученые - Норм!
На канале «Русские норм!» вышел первый эпизод спецпроекта «Ученые — норм!». Это серия выпусков про людей, которые двигают науку, да и все человечество, вперед.
Первый выпуск — про лингвистику. Многие считают, что лингвистика — это наука, которую сложно приложить к реальной жизни, но это вовсе не так.
Ученые из «Яндекса» Иван Ямщиков и Андрей Малинин учат нейросети генерировать тексты и строят модели, которые могут оценить границы собственных знаний и сказать, что чего-то не понимают. Нейролингвист Ольга Драгой исследует нарушения речи у детей и помогает хирургам проводить операции на мозге. А доцент Школы лингвистики ВШЭ Борис Орехов изучает поэтическую речь. Они рассказали нам о том, насколько разной бывает лингвистика, о своем пути в науку, о главных качествах ученого и о том, почему вообще наука — это интересно. Помимо науки, наши герои увлекаются искусством и спортом, они взбираются на горные вершины, катаются на мотоциклах, снимают кино, пишут подкасты и коллекционируют аналоговые фотоаппараты.
#ScientificML #linguistics
На канале «Русские норм!» вышел первый эпизод спецпроекта «Ученые — норм!». Это серия выпусков про людей, которые двигают науку, да и все человечество, вперед.
Первый выпуск — про лингвистику. Многие считают, что лингвистика — это наука, которую сложно приложить к реальной жизни, но это вовсе не так.
Ученые из «Яндекса» Иван Ямщиков и Андрей Малинин учат нейросети генерировать тексты и строят модели, которые могут оценить границы собственных знаний и сказать, что чего-то не понимают. Нейролингвист Ольга Драгой исследует нарушения речи у детей и помогает хирургам проводить операции на мозге. А доцент Школы лингвистики ВШЭ Борис Орехов изучает поэтическую речь. Они рассказали нам о том, насколько разной бывает лингвистика, о своем пути в науку, о главных качествах ученого и о том, почему вообще наука — это интересно. Помимо науки, наши герои увлекаются искусством и спортом, они взбираются на горные вершины, катаются на мотоциклах, снимают кино, пишут подкасты и коллекционируют аналоговые фотоаппараты.
#ScientificML #linguistics
YouTube
Нейросети, стихи и операции на мозге. Зачем нужна лингвистика
Обычно мы рассказываем истории предпринимателей. Но среди «русских норм», которыми можно гордиться, есть немало ученых и исследователей. О них мы и расскажем в этом спецпроекте, который сделали вместе с ребятами из Яндекса.
Первый выпуск — про лингвистику.…
Первый выпуск — про лингвистику.…
This media is not supported in your browser
VIEW IN TELEGRAM
👾Space Invaders in Jupyter
Обучение моделек - это долго и нудно!
Лучше, пока модель учится, поиграйте в соревновательную игру "Космические захватчики" прямо в своём блокноте.
Проверьте, сможете ли вы попасть на вершину лидерборда (хотя тут у ребят и девчат обучающих огроменные модели явно есть преимущество).
Как поставить
Обучение моделек - это долго и нудно!
Лучше, пока модель учится, поиграйте в соревновательную игру "Космические захватчики" прямо в своём блокноте.
Проверьте, сможете ли вы попасть на вершину лидерборда (хотя тут у ребят и девчат обучающих огроменные модели явно есть преимущество).
Как поставить
This media is not supported in your browser
VIEW IN TELEGRAM
Forwarded from Мишин Лернинг 🇺🇦🇮🇱
This media is not supported in your browser
VIEW IN TELEGRAM
🦹 Лекция StyleGAN 1-2-3 Speed Dive от самого L4RZ
Вы и так знаете StyleGAN кудесника из твиттера L4RZ по косплей моделям, женщинам-кошкам (неко-тян) из моих постов и постов Denis Sexy IT и эйай ньюз (первый, второй), так что в представлении мастер не нуждается.
В эту субботу в 14-00 состоится нечто невероятное! L4RZ решил сделать 2х часовую лекцию по StyleGAN 1, 2, Ada, даже StyleGAN3
▫️GAN
- What is a GAN? Generator VS Discriminator
- Milestone works (Goodfellow, Mooch, Karras)
▫️StyleGAN 1-2-3
- Issues encountered (mode collapse, positional artifacts)
- StyleGAN 1 -> 2 -> ada -> 3
▫️Practical Aspects
- Training
- Sampling
- Visualizing
- Cool projects
🎓 Когда? 14:00 (эта суббота) 30 октября
🎬 Где? YouTube канал Трансформер
👉 регистрация на лекцию L4RZ: StyleGAN 1-2-3 Speed Dive | ссылки вышлем на почту в пт в 21:00 и в сб в 12:00
p.s.: Саша Грей приглашает тебя на лекцию и найти ее самому по текстовому описанию в пространстве гана L4RZ
🔮колаб StyleGAN2/3+CLIP
Вы и так знаете StyleGAN кудесника из твиттера L4RZ по косплей моделям, женщинам-кошкам (неко-тян) из моих постов и постов Denis Sexy IT и эйай ньюз (первый, второй), так что в представлении мастер не нуждается.
В эту субботу в 14-00 состоится нечто невероятное! L4RZ решил сделать 2х часовую лекцию по StyleGAN 1, 2, Ada, даже StyleGAN3
▫️GAN
- What is a GAN? Generator VS Discriminator
- Milestone works (Goodfellow, Mooch, Karras)
▫️StyleGAN 1-2-3
- Issues encountered (mode collapse, positional artifacts)
- StyleGAN 1 -> 2 -> ada -> 3
▫️Practical Aspects
- Training
- Sampling
- Visualizing
- Cool projects
🎓 Когда? 14:00 (эта суббота) 30 октября
🎬 Где? YouTube канал Трансформер
👉 регистрация на лекцию L4RZ: StyleGAN 1-2-3 Speed Dive | ссылки вышлем на почту в пт в 21:00 и в сб в 12:00
p.s.: Саша Грей приглашает тебя на лекцию и найти ее самому по текстовому описанию в пространстве гана L4RZ
🔮колаб StyleGAN2/3+CLIP
WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing (Microsoft)
Self-supervised learning (SSL) уже достигло больших успехов в распознавании речи. При этом в для других задач обработки речи были предприняты лишь ограниченные попытки. Поскольку речевой сигнал содержит многогранную информацию, включая личность диктора, паралингвистику, содержание речи и т.д., обучение универсальным представлениям для всех речевых задач является сложной задачей.
В этой статье авторы предлагают новую модель WavLM для решения речевых задач полного стека. WavLM построена на основе архитектуры HuBERT с акцентом на моделирование речевого контента и сохранение идентичности диктора.
📎 Статья
🖥 Код
#SSL #signals #speech #audio
Self-supervised learning (SSL) уже достигло больших успехов в распознавании речи. При этом в для других задач обработки речи были предприняты лишь ограниченные попытки. Поскольку речевой сигнал содержит многогранную информацию, включая личность диктора, паралингвистику, содержание речи и т.д., обучение универсальным представлениям для всех речевых задач является сложной задачей.
В этой статье авторы предлагают новую модель WavLM для решения речевых задач полного стека. WavLM построена на основе архитектуры HuBERT с акцентом на моделирование речевого контента и сохранение идентичности диктора.
📎 Статья
🖥 Код
#SSL #signals #speech #audio
AugMax: Adversarial Composition of Random Augmentations for Robust Training
Аугментация (дополнение) данных - это простой и эффективный способ улучшения генерализации глубоких нейронных сетей.
Авторы предлагают схему аугментации данных, названную AugMax (отсылка к AugMix). AugMax сначала случайным образом выбирает несколько операторов дополнения, а затем обучается состязательной смеси выбранных операторов.
📎 Статья
🖥 Код
#augmentation #training
Аугментация (дополнение) данных - это простой и эффективный способ улучшения генерализации глубоких нейронных сетей.
Авторы предлагают схему аугментации данных, названную AugMax (отсылка к AugMix). AugMax сначала случайным образом выбирает несколько операторов дополнения, а затем обучается состязательной смеси выбранных операторов.
📎 Статья
🖥 Код
#augmentation #training
Forwarded from N + 1
В сентябре математик Мартин Доуд выложил в открытый доступ свое решение одной из самых известных «задач тысячелетия» — доказательство P≠NP. Но торжества по этому поводу длились недолго. Задача, судя по всему, устояла: после ряда критических замечаний к работе Доуд снял ее с публикации. Математик Владимир Потапов рассказывает о задаче, которой бросил вызов его американский коллега, и том, что, по-видимому, пошло не так
n-pl.us/31093/t
n-pl.us/31093/t
MedMNIST v2 👩⚕️
Вышла большая MNIST-подобная коллекция стандартизированных биомедицинских изображений, включающая 12 наборов данных для 2D и 6 наборов данных для 3D. Все изображения предварительно обработаны в формат 28 x 28 (2D) или 28 x 28 x 28 (3D) с соответствующими классификационными метками.
Охватывая основные модальности данных в биомедицинских изображениях, MedMNIST v2 предназначен для выполнения классификации на легких 2D и 3D изображениях с различными масштабами данных (от 100 до 100 000) и разнообразными задачами (бинарные/многоклассовые, порядковые регрессии и мульти-метки). Полученный набор данных, состоящий из 708 069 2D-изображений и 10 214 3D-изображений в целом, может помочь в многочисленных исследовательских и образовательных целях в области анализа биомедицинских изображений, компьютерного зрения и машинного обучения.
Про предыдущую версию мы писали тут (оказалось что мы писали про второй medmnist, как мне верно напомнили).
🗂 Датасет
📎 Статья
#ScientificML #datasets #medicine #3d
Вышла большая MNIST-подобная коллекция стандартизированных биомедицинских изображений, включающая 12 наборов данных для 2D и 6 наборов данных для 3D. Все изображения предварительно обработаны в формат 28 x 28 (2D) или 28 x 28 x 28 (3D) с соответствующими классификационными метками.
Охватывая основные модальности данных в биомедицинских изображениях, MedMNIST v2 предназначен для выполнения классификации на легких 2D и 3D изображениях с различными масштабами данных (от 100 до 100 000) и разнообразными задачами (бинарные/многоклассовые, порядковые регрессии и мульти-метки). Полученный набор данных, состоящий из 708 069 2D-изображений и 10 214 3D-изображений в целом, может помочь в многочисленных исследовательских и образовательных целях в области анализа биомедицинских изображений, компьютерного зрения и машинного обучения.
Про предыдущую версию мы писали тут (оказалось что мы писали про второй medmnist, как мне верно напомнили).
🗂 Датасет
📎 Статья
#ScientificML #datasets #medicine #3d
Forwarded from Denis Sexy IT 🤖
OpenAI продолжает решать все новые и новые задачи своими нейронками, в этот раз они пришли за домашкой по математике – натренили нейронку которая умеет успешно решать 90% математических задачек.
Вот пример на основе реальной задачи из учебника, по ссылке есть больше примеров:
>У Энтони было 50 карандашей. Он отдал 1/2 своих карандашей Брэндону, а 3/5 оставшихся карандашей отдал Чарли. Оставшиеся карандаши он оставил себе. Сколько карандашей оставил себе Энтони?
Пока вы думаете, нейронка уже решила:
>Энтони отдал 50/2=25 карандашей Брэндону.
После того, как Брэндон отдал 25 карандашей, у Энтони осталось 50-25= 25 карандашей.
Энтони дал 25*3/5=15 карандашей Чарли.
После того, как Чарли отдал 15 карандашей, у Энтони осталось 25-15= 10 карандашей.
Поэтому Энтони оставил себе 10 карандашей.
Что же, ждем когда OpenAI придет за физикой и изобретет холодный синтез 🌚
Вот пример на основе реальной задачи из учебника, по ссылке есть больше примеров:
>У Энтони было 50 карандашей. Он отдал 1/2 своих карандашей Брэндону, а 3/5 оставшихся карандашей отдал Чарли. Оставшиеся карандаши он оставил себе. Сколько карандашей оставил себе Энтони?
Пока вы думаете, нейронка уже решила:
>Энтони отдал 50/2=25 карандашей Брэндону.
После того, как Брэндон отдал 25 карандашей, у Энтони осталось 50-25= 25 карандашей.
Энтони дал 25*3/5=15 карандашей Чарли.
После того, как Чарли отдал 15 карандашей, у Энтони осталось 25-15= 10 карандашей.
Поэтому Энтони оставил себе 10 карандашей.
Что же, ждем когда OpenAI придет за физикой и изобретет холодный синтез 🌚
Openai
Solving math word problems
We’ve trained a system that solves grade school math problems with nearly twice the accuracy of a fine-tuned GPT-3 model. It solves about 90% as many problems as real kids: a small sample of 9-12 year olds scored 60% on a test from our dataset, while our…