This media is not supported in your browser
VIEW IN TELEGRAM
TorchIO
TorchIO - это библиотека для эффективного чтения, предварительной обработки, выборки, дополнения и записи 3D медицинских изображений в приложениях глубокого обучения, написанных на PyTorch, включая преобразования интенсивности и пространственные преобразования для дополнения и предварительной обработки данных. Преобразования включают типичные операции компьютерного зрения, такие как рандомные аффинные преобразования, а также специфические для данной области, такие как моделирование артефактов интенсивности из-за неоднородности магнитного поля МРТ или артефактов движения в k-пространстве.
Сайт
GitHub
Статья
#code #medicine #images #3d #ScientificML
TorchIO - это библиотека для эффективного чтения, предварительной обработки, выборки, дополнения и записи 3D медицинских изображений в приложениях глубокого обучения, написанных на PyTorch, включая преобразования интенсивности и пространственные преобразования для дополнения и предварительной обработки данных. Преобразования включают типичные операции компьютерного зрения, такие как рандомные аффинные преобразования, а также специфические для данной области, такие как моделирование артефактов интенсивности из-за неоднородности магнитного поля МРТ или артефактов движения в k-пространстве.
Сайт
GitHub
Статья
#code #medicine #images #3d #ScientificML
MEDIC
MEDIC - это большой набор данных классификации изображений из социальных сетей для гуманитарного реагирования, состоящий из 71 198 изображений для решения четырех различных задач. Он составлен из данных из нескольких источников (таких как CrisisMMD, AIDR и Damage Multimodal Dataset)
Датасет
#datasets #images #ScientifcML
MEDIC - это большой набор данных классификации изображений из социальных сетей для гуманитарного реагирования, состоящий из 71 198 изображений для решения четырех различных задач. Он составлен из данных из нескольких источников (таких как CrisisMMD, AIDR и Damage Multimodal Dataset)
Датасет
#datasets #images #ScientifcML
Sparse-MLP: A Fully-MLP Architecture with Conditional Computation
Mixture-of-Experts (MoE) с разреженными условными вычислениями - эффективная архитектура для масштабирования моделей attention на большее количество параметров.
Sparse-MLP - это по сути MLP-Mixer с разреженными слоями MoE. Подмножество dense блоков MLP-Mixer заменяется на разреженные (sparse) блоки. В каждом этом блоке применяется два этапа слоев MoE: один с экспертами MLP, смешивающими информацию внутри каналов по размеру патча изображения, другой с экспертами MLP, смешивающими информацию внутри патчей по размеру канала.
Кроме того, для снижения вычислительных затрат авторы используют слои Re-represent в каждом блоке Sparse. Эти слои предназначены для изменения масштаба представления изображений с помощью двух простых, но эффективных линейных преобразований.
На небольших задачах классификации изображений, т.е. Cifar10 и Cifar100 модель Sparse-MLP достигает лучшей производительности, чем базовые модели.
Статья
#mlp #images #conditional
Mixture-of-Experts (MoE) с разреженными условными вычислениями - эффективная архитектура для масштабирования моделей attention на большее количество параметров.
Sparse-MLP - это по сути MLP-Mixer с разреженными слоями MoE. Подмножество dense блоков MLP-Mixer заменяется на разреженные (sparse) блоки. В каждом этом блоке применяется два этапа слоев MoE: один с экспертами MLP, смешивающими информацию внутри каналов по размеру патча изображения, другой с экспертами MLP, смешивающими информацию внутри патчей по размеру канала.
Кроме того, для снижения вычислительных затрат авторы используют слои Re-represent в каждом блоке Sparse. Эти слои предназначены для изменения масштаба представления изображений с помощью двух простых, но эффективных линейных преобразований.
На небольших задачах классификации изображений, т.е. Cifar10 и Cifar100 модель Sparse-MLP достигает лучшей производительности, чем базовые модели.
Статья
#mlp #images #conditional
Смотрите какая крутая штука! Оказывается loss функцию можно показывать очень и очень красиво и артистично!
Больше крутых примеров 👉 https://losslandscape.com/gallery/
#images #generative #training
Больше крутых примеров 👉 https://losslandscape.com/gallery/
#images #generative #training
img2dataset
Програмка позволяет с легкостью превращать наборы url в ImageDataset. Обещают что за 20 часов на домашнем компе можно подгрузить и упаковать до 100 млн изображений.
Код
#datasets #images #multimodal
Програмка позволяет с легкостью превращать наборы url в ImageDataset. Обещают что за 20 часов на домашнем компе можно подгрузить и упаковать до 100 млн изображений.
Код
#datasets #images #multimodal
GitHub
GitHub - rom1504/img2dataset: Easily turn large sets of image urls to an image dataset. Can download, resize and package 100M urls…
Easily turn large sets of image urls to an image dataset. Can download, resize and package 100M urls in 20h on one machine. - rom1504/img2dataset