AI Для Всех
12.8K subscribers
1.17K photos
152 videos
10 files
1.37K links
Канал, в котором мы говорим про искусственный интеллект простыми словами

Главный редактор и по рекламе: @crimeacs

Иногда пишут в канал: @GingerSpacetail, @innovationitsme
Download Telegram
Нейроморфные чипы для нейросетей

Достижения в области машинного обучения напрямую связаны с увеличивающимеся (с годами) вычислительными ресурсами. Но есть нюанс - ML требует больше ресурсов быстрее, чем эти ресурсы становятся доступны (например OpenAI посчитали что ресурсы необходимые для достижениня SOTA удваиваются каждые 3.4 месяца).

В качестве решения предлагают использовать нйероморфные чипы - то есть чипы, которые тем или иным способом иммитируют природные мозги. Например, у человеческого мозга крайне низкие энергозатраты - всего 20 ватт. Для сравнения, для GPT-3 нужно 20 Мегаватт.

В статье рассказывается про современные подходы к реализации нейроморфных чипов:
1) Spiking Neural Networks
2) Highly Parallel Systems
3) Analogue Computing

И про лабы и стратапы, которые такие чипы уже делают.

#hardware
Генеративное_глубокое_обучение_Творческий_потенци.pdf
12.4 MB
Неплохая вводная книга по генеративным сетям. Устаревшая местами, но для новичков хорошая (нуу и она на tensorflow).

Неформальное описание задачи для AE и GAN очень творческие и красивые. Имхо для GAN у автора лучше получилось описание, чем классическое сыщик-фальшивомонетчик

#generative #GAN #gpt #книги
Красивая статья на kaggle. Автор не добивается на соревновании прям огонь результата. Но при этом очень аккуратно работает с пропущенными значениями и кодированием категориальных переменных. Читать интересно

Ну и в комментах есть ссылка на статью, где автор ручками чистит немного данные и тоже логрегом получает хорошие резы

#categorical
Есть такой пакет DeepTables.

Для работы с табличными данными, содержит реализации нескольких красивых решений.

На соревновании сверху почти с нуля добивается топ-качества.

Части совсем новых сетей (типа TabNet) не имплементировано + реализации в принципе на tensorflow. Что немного затрудняет внедрение их в курс - сложно будет делать transfer learning и прочее.

Плюс качество они меряют на этом датасете в основном, а датасет по отзывам почти не содержит взаимодействия признаков и тд.
Потому можно пока упомянуть вскользь, пока/если никто из нас на реальной задаче не обнаружит, что пакет - топыч

#tabular
Насчет датасетов - набор датасетов для демонстраций ML на химии.

К сожалению, есть нюанс - все датасеты очень простые. Но именно для иллюстрации - почему бы и нет

#ScientificML #chemistry #datasets
Так же стоит отметить ициативу DeepChem, которые автоматизируют обучение на химических веществах.

GitHub

Там много неликвида или упрощенных схем, которые часто не будут работать, но как пример, что в принципе можно делать - они подходят.

#ScientificML #chemistry
Также в нем есть полезные фишки хотя бы для понимания - например, реализован один из правильных способов разбиение химических молекул
Wasserstein WGAN-GP для генерации молекул. Опять же, датасет используется довольно бесмысленный, но можем адаптировать этот пример с tensorflow на pytorch.
Ну и взять что-нить хоть чуть осмысленнее, типа ингибиторов киназ

#ScientificML #chemistry #graph #GAN
Perceiver IO: позволяет работать с различными модальностями (текст, картинки, звук, видео), в том числе одновременно

Блог-пост DeepMind
GitHub (код, колабы, предобученные модели JAX)
GitHub (реплика на PyTorch)

#transformer #multimodal
Где машинка применяется в drug design
Довольно по верхам имхо. Только общее представление получить.

И, да, генерация молекул упоминается.

YouTube
NeurIPS

#ScientificML #medicine
Ну или вот талк от главы Insilico Medicine. Про то, как у них пайплайн по разработке лекарств работает
Про longevity я бы не слушал, но это у меня аллергия.

YouTube

#ScientificML #medicine
На NeurIPS будет целая отдельная секция про AI for Science:

http://ai4sciencecommunity.github.io

Шикарный line-up и до 18 сентября можно подать абстракты

#ScientificML #conference
StyleGAN-NADA преобразует предварительно обученный генератор в новые домены, используя только текстовую подсказку и без обучающих данных.

Естественно направляет его CLIP.

Project

#GAN #CLIP #multimodal
Датасет жужжания москитов. Видимо что бы по звуку можно было определять виды этих комаров.

#datasets #ScientificML #sound #audio