AI Для Всех
12.8K subscribers
1.18K photos
153 videos
10 files
1.38K links
Канал, в котором мы говорим про искусственный интеллект простыми словами

Главный редактор и по рекламе: @crimeacs

Иногда пишут в канал: @GingerSpacetail, @innovationitsme
Download Telegram
Forwarded from ExMuffin
This media is not supported in your browser
VIEW IN TELEGRAM
💃 HomeStylist v.1.0 🕺

Сегодня выкатили нейросеть, которая может не только менять позу, но и переодевать человека на фотографии. Код есть, а Колаба небыло. Я исправил это недоразумение. Сделал его удобным на столько, на сколько это вообще возможно, ибо чтобы завести эту нейросеть пришлось клонировать еще парочку, но оно того стоило. Качество синтезированного изображения на высоте. Разрешение, конечно, 512 по большей стороне, но те, кому нужно, прогонят дополнительно через какой-нибудь апскейлер.

https://colab.research.google.com/github/tg-bomze/collection-of-notebooks/blob/master/HomeStylist.ipynb
Media is too big
VIEW IN TELEGRAM
Good news, everyone!

Я уже почти год работаю в проекте MSU.ai и позвольте поделиться инсайдерской инфой - у нас новый набор на курс “Нейросети и их применение в научных исследованиях”.

Главная фишечка курса в том, что он бесплатный и у нас есть крутые плюшки в виде приличных стипендий (20к рублей/месяц) и премии за публикации (до 200к рублей, Карл! 200к рублей!!!). Но есть пара нюансов:
1) курс только для для тех кто учится и/или учился в МГУ (с прицелом на магистров и аспирантов).
2) у нас довольно хардкорный конкурс, но оно того стоит.

Если интересно, подробная инфа и регистрация (до 31ого января) тут.

#курсы #basics
Продолжаем неделю хороших новостей. Yandex открыли прием заявок на Научную премию имени Ильи Сегаловича. Крутая и престижная премия, основаная в честь достойного человека.

Премия имени Ильи Сегаловича учреждена для поддержки молодых исследователей и научного сообщества в России, Беларуси и Казахстане.

Податься тут

#премии
@hardmaru (Twitter)
🚀🗄 FAST DATA LOADER IS ALL YOU NEED: Fast Forward Computer Vision

Тут студенты из MiT собрали быстрейший даталоадер!

Все что нужно, так это заменить
from torch.utils.data import DataLoader на from ffcv.loader import Loader, OrderOption, и далее по примеру из картинки поста.

Такой подход позволяет затренить родным PyTorch модель ResNet на ImageNet всего за 35 минуут (1$ на AWS)

📮 FFCV 💻 Git 📚 Docs
Language Models as Zero-Shot Planners

Большие языковые модели (LLM), такие как GPT-3 и Codex, могут планировать действия для воплощенных агентов (embodied - ну всякие там роботы и тд),
даже без дополнительного обучения.

То есть ты говоришь GPT:
- Алиса, сделай завтрак!
А она это преобразует в последовательность действий для робота:
- дойди до холодильника
- открой холодильник
- и тд

📎 Статья
🖥 Код
🦸‍♀️ Проект

#gpt #transformer #reasoning
Forwarded from Sberloga
Университет Иннополис открыл регистрацию на онлайн-хакатон по ИИ с призовым фондом 1 млн рублей

Международный отраслевой хакатон в области искусственного интеллекта Global AI Challenge пройдет 9—24 февраля. Заявки принимаются до 7 февраля от команд из 2—6 человек, состоящих из молодых специалистов, преподавателей, аспирантов направления Data Science, обучающихся ведущих образовательных организаций России и стран ближнего зарубежья.
Командам предстоит решить задачу по предсказанию активности ингибиторов на основе малых молекул против COVID-19.

Подробности и регистрация: https://globalai.innopolis.university/
Forwarded from DL in NLP (Vlad Lialin)
Как мне подойти к задаче классфификации/QA/NER/...? В чатах можно часто услышать такие вопросы. И несмотря на обилие туториалов по всем стандартным задачам NLP, я пока что не видел хорошего места, куда можно было бы послать людей, где есть все эти задачки.

Теперь такое место есть! 🤗 Tasks

Вы выбираете задачу, которая вас волнует: классификация, QA, NER, MT, суммаризация, генерация, схожесть текстов

На каждую из них есть короткая лекция, описываются вариации задачи, есть ссылки на датасеты и предобученные модели. Самое главное: есть ссылки на A) хороший ноутбук, который подробно, но доступно описывают как применить условный BERT к этой задаче B ) хорошо задокументированный скрипт, который вы можете легко подогнать под свою задачу.

Кроме этого есть ссылки на релевантные блогпосты, которые могут рассматривать задачу с разных сторон. В общем советую теперь слать людей на 🤗 Tasks.
Выступаю на Science Slam минут через 10. Буду рассказывать про то, зачем делать DeepFake землетрясений.
Прямую трансляцию можно посмотреть 👉 тут
Завтра (26ого) пройдёт онлайн митап по ИИ в радиологии. Регистрация тут
Запись моего научпоп рассказа про дипфэйки, как их делают, и зачем кому-то может понадобиться подделать землетрясение.

Смотреть
OpenAI добавила возможность получать эмбеддинги текста или кода напрямую из своего API

Эмбеддинги - это числовые представления каких-то понятий (например слов или кусочков кода), преобразованные в последовательности чисел (например [1.,…,2.]), которые облегчают компьютеру понимание отношений между этими понятиями.

Эмбеддинги полезны при работе с естественным языком и кодом, поскольку их можно легко использовать и сравнивать с другими моделями машинного обучения и алгоритмами, такими как кластеризация или поиск.

То есть получается, берём например текст -> прогоняем его через OpenAI API -> получаем эмбеддинг -> и можем его использовать с любыми моделями машинного обучения (не только с OpenAI, а то получилось бы еще одна «экосистема» по типу Apple).

Для тех, кто потихонечку вкатывается в NLP рекомендую почитать блог-пост. Там простым и понятным языком написано.

📸 Блог-пост
📎 Статья

#gpt #nlp #basics
Forwarded from эйай ньюз
​​Молодцы ребята! Офигенный прогресс по сохранению деталей в задачи ресторации старых портретов. Особенно мне нравится автопортрет ван Гога. А у Толстого кажется сетка сделала бороду менее широкой.
This media is not supported in your browser
VIEW IN TELEGRAM
Шустрый diffusion GAN

За последнее пару лет было разработано большое разнообразие глубоких генеративных моделей. Эти модели обычно генерируют либо хорошо, либо быстро.

В частности, диффузионные модели продемонстрировали впечатляющее качество, но они просто невыносимо медленные (что не позволяет их применять во многих реальных приложениях). Исследователи из NVIDIA придумали как значительно ускорить процесс с помощью сложного мультимодального распределения. Они показали, что их диффузионные GAN сравнимы по качеству с оригинальными диффузионными моделями, но при этом работают в 2000 раз быстрее (на датасете CIFAR-10).

Denoising diffusion GAN - первая модель, которая снижает стоимость сэмплинга в диффузионных моделях до такой степени, что позволяет задёшево применять их в реальных приложениях.

📎 Статья
🖥 Проект
💻 Код

#diffusion #gan #generative
Forwarded from AbstractDL
🔥InstructGPT: новое поколение GPT от OpenAI

Архитектурно это всё та же GPT-3, вся фишка в дообучении:
1. Сначала, они её немного зафайнтюнили на чистых данных.
2. Потом вручную разметили качество получающихся аутпутов и обучили reward модель его предсказывать.
3. Далее в ход пошёл Reinforcement Learning алгоритм (PPO), который по этой reward модели ещё чуть-чуть затюнил GPT.

В итоге InstructGPT стала менее токсичной, реже путается в фактах и в целом лучше справляется со всеми задачами. Говорят, что даже 1.3B новая модель лучше, чем 175B старая.

P.S. Похоже, что что RL теперь снова в моде благодаря языковым моделям.

Статья, блог, GitHub
MARIDA (Архив морского мусора)

Это первый набор данных, основанный на мультиспектральных спутниковых данных Sentinel-2 (S2), который позволяет отличить морской мусор от других морских объектов, включая макроводоросли Sargassum, корабли, природные органические материалы, волны, волнения, пену, различные типы воды (т.е. прозрачная, мутная вода, вода с осадками, мелководье) и облака.

🗂 Датасет

#ScientificML #datasets #earthscience
Deep physical neural networks trained with backpropagation.

Глубокое обучение уже повсюду. Однако, оно присутствует только в виде кода. Исследователи предложили делать бэкпроп сразу на физических приборах (обучение с учетом физики). Подобно тому, как глубокое обучение реализует вычисления с помощью глубоких нейронных сетей, состоящих из слоев математических функций, этот подход позволяет обучать глубокие физические нейронные сети, состоящие из слоев управляемых физических систем.

Коллектив авторов обучил различные физические нейронные сети, основанные на оптике, механике и электронике, для экспериментального выполнения задач классификации аудио и изображений. Физические нейронные сети способны выполнять машинное обучение быстрее и более энергоэффективно, чем обычные электронные процессоры, и, в более широком смысле, могут наделять физические системы автоматически создаваемыми физическими функциями, например, для робототехники, материалов и интеллектуальных датчиков.

📎 Статья

#physics #chip #hardware
This media is not supported in your browser
VIEW IN TELEGRAM
Open Catalyst

Meta AI и Университет Карнеги-Меллон объединили усилия для поиска более эффективных и масштабируемых способов хранения и использования возобновляемой энергии.

Переход на возобновляемые источники энергии требует способа хранения энергии на время, когда солнце не светит и ветер не дует. Для этого необходимы электрокатализаторы. Однако имеющиеся сегодня электрокатализаторы неэффективны или основаны на редких и дорогих материалах.

Open Catalyst стремится найти недорогие катализаторы, способные стимулировать химические реакции, необходимые для преобразования избыточной энергии солнца и ветра в другие виды топлива, которые могут быть использованы для выработки электроэнергии, когда другие источники возобновляемой энергии недоступны. Если разработать ИИ для точного прогнозирования атомных взаимодействий быстрее, чем тяжелые вычислительные симуляции, на которые сегодня полагаются ученые, то расчеты, занимающие в современных лабораториях дни, смогут занимать секунды.

📸 Блог-пост

#ScientificML
Раскопал старое видео про вертолетик, который делает трюки с помощью обучения с подкреплением (RL). Сейчас все эти люди выглядят совсем по другому, и занимают совершенно другие должности. Воистину, как пелось в песне группы I Fight Dragons: The geeks will inherit the Earth (ботаны унаследуют Землю).

Знакомимся: Andrew Ng - основатель Coursera, Adam Coats - директор в Apple, Pieter Abbeel - директор Berkeley Robot Learning Lab