🔥StyleGAN3 + CLIP
В твиттере выложили Colab для StyleGAN3+CLIP (с помощью текста, можно направлять генерацию картинки, а потом создавать красивые видосы), а я привел его к божескому виду, что бы было просто играться (и это что-то!)
💻Colab
P.S.: на картинке an amazon warrior трансформированный из MetFaces
#gan #text2image #clip
В твиттере выложили Colab для StyleGAN3+CLIP (с помощью текста, можно направлять генерацию картинки, а потом создавать красивые видосы), а я привел его к божескому виду, что бы было просто играться (и это что-то!)
💻Colab
P.S.: на картинке an amazon warrior трансформированный из MetFaces
#gan #text2image #clip
Pixray Panorama
Ещё чуть чуть искусства в нашем научном сообществе. Недавно, Алексей Тихонов выложил крутейший блокнот для генерации пиксельных панорам с помощью PixelDraw + CLIP. Присылайте в комменты что получилось!
💻Colab
#text2image #gan #clip
Ещё чуть чуть искусства в нашем научном сообществе. Недавно, Алексей Тихонов выложил крутейший блокнот для генерации пиксельных панорам с помощью PixelDraw + CLIP. Присылайте в комменты что получилось!
💻Colab
#text2image #gan #clip
This is Heloween
На просторах твиттера откопал колабчик, который позволяет преобразовать любое лицо во что угодно с помощью текста (CLIP). Самое то для следующих выходных 🎃
💻 Colab
#gan #text2image #CLIP
На просторах твиттера откопал колабчик, который позволяет преобразовать любое лицо во что угодно с помощью текста (CLIP). Самое то для следующих выходных 🎃
💻 Colab
#gan #text2image #CLIP
🤯 wav2CLIP
Новый метод обучения аудиопредставлений путем дистилляции из контрастивного предварительного обучения языку и изображению (CLIP).
Авторы оценивают Wav2CLIP на различных аудиозадачах, включая классификацию, поиск и генерацию, и показывают, что Wav2CLIP превосходит общедоступные алгоритмы предварительного обучения audio representation.
Wav2CLIP проецирует аудио в общее пространство эмбедингов с изображениями и текстом, что позволяет использовать его в мультимодальных задачах, таких как классификация zero-shot и кросс-модальный поиск. Более того, Wav2CLIP требуется всего ~10% от данных необходимых для supervised learning.
📎 Статья
🖥 Код
#clip #audio #video #multimodal
Новый метод обучения аудиопредставлений путем дистилляции из контрастивного предварительного обучения языку и изображению (CLIP).
Авторы оценивают Wav2CLIP на различных аудиозадачах, включая классификацию, поиск и генерацию, и показывают, что Wav2CLIP превосходит общедоступные алгоритмы предварительного обучения audio representation.
Wav2CLIP проецирует аудио в общее пространство эмбедингов с изображениями и текстом, что позволяет использовать его в мультимодальных задачах, таких как классификация zero-shot и кросс-модальный поиск. Более того, Wav2CLIP требуется всего ~10% от данных необходимых для supervised learning.
📎 Статья
🖥 Код
#clip #audio #video #multimodal
This media is not supported in your browser
VIEW IN TELEGRAM
ProsePainter
Создавайте образы, рисуя словами.
ProsePainter сочетает в себе рисование руками с оптимизацией изображения в реальном времени с помощью машинного обучения. Просто скажите, что вы хотите, и выделите нужную область.
🖥 Код
#CLIP #images #multimodal
Создавайте образы, рисуя словами.
ProsePainter сочетает в себе рисование руками с оптимизацией изображения в реальном времени с помощью машинного обучения. Просто скажите, что вы хотите, и выделите нужную область.
🖥 Код
#CLIP #images #multimodal
ClipCap: CLIP Prefix for Image Captioning
Нейронки научились хорошо предсказывать описания любых картинок. Сначала изображение прогоняют через CLIP (получают эмбеддинг изображения), а затем вытаскивают соответствующее текстовое описание из языковой модели.
Основная идея статьи заключается в том, что вместе с предварительно обученной языковой моделью (GPT2) авторы получают широкое понимание как визуальных, так и текстовых данных.
Таким образом, без дополнительных аннотаций или предварительного обучения, сеть эффективно генерирует осмысленные подписи для любых изображений.
📎 Статья
💻 Colab
🖥 Код
🤗 Онлайн
#clip #images #captioning #text
Нейронки научились хорошо предсказывать описания любых картинок. Сначала изображение прогоняют через CLIP (получают эмбеддинг изображения), а затем вытаскивают соответствующее текстовое описание из языковой модели.
Основная идея статьи заключается в том, что вместе с предварительно обученной языковой моделью (GPT2) авторы получают широкое понимание как визуальных, так и текстовых данных.
Таким образом, без дополнительных аннотаций или предварительного обучения, сеть эффективно генерирует осмысленные подписи для любых изображений.
📎 Статья
💻 Colab
🖥 Код
🤗 Онлайн
#clip #images #captioning #text