Keypoint Communities
Вышел новый метод для оценки позы человека/объекта. Авторы моделируют все ключевые точки, принадлежащие человеку или объекту - позу - в виде графа и используют знания из области обнаружения сообществ для количественной оценки независимости ключевых точек.
Эксперименты показывают, что этот метод превосходит все предыдущие методы для оценки позы человека на порядок.
Оказалось что можно и картины и скульптуры грузить тоже. Я прям вижу как какой-нибудь смышленый искусствовед делает обобщения о «разнице в позе на картинах 16 и 19 века».
Кстати, поиграть/поработать с сеткой можно на gradio (онлайн и хоть с телефона).
Статья
Код
#pose #keypoints
Вышел новый метод для оценки позы человека/объекта. Авторы моделируют все ключевые точки, принадлежащие человеку или объекту - позу - в виде графа и используют знания из области обнаружения сообществ для количественной оценки независимости ключевых точек.
Эксперименты показывают, что этот метод превосходит все предыдущие методы для оценки позы человека на порядок.
Оказалось что можно и картины и скульптуры грузить тоже. Я прям вижу как какой-нибудь смышленый искусствовед делает обобщения о «разнице в позе на картинах 16 и 19 века».
Кстати, поиграть/поработать с сеткой можно на gradio (онлайн и хоть с телефона).
Статья
Код
#pose #keypoints
3D-Transformer: Molecular Representation with Transformer in 3D Space
Пространственные структуры в трехмерном пространстве важны для определения свойств молекул. В последних работах по представлению молекул и прогнозированию свойств используется геометрическое глубокое обучение. Однако таки сети требуют больших вычислительных затрат для учета дальних зависимостей входных атомов, а также не учитывают неоднородность межатомных расстояний, что не позволяет изучать контекстно-зависимые представления на разных масштабах.
Чтобы решить эти проблемы, авторы придумали 3D-Transformer, вариант трансформера для молекулярных представлений, который включает трехмерную пространственную информацию. 3D-Transformer работает на полносвязных графах с прямыми связями между атомами. Чтобы справиться с неоднородностью межатомных расстояний, они разработали разномасштабный модуль self-attention.
Статья
Код
#ScientificML #chemistry #transformers #3d
Пространственные структуры в трехмерном пространстве важны для определения свойств молекул. В последних работах по представлению молекул и прогнозированию свойств используется геометрическое глубокое обучение. Однако таки сети требуют больших вычислительных затрат для учета дальних зависимостей входных атомов, а также не учитывают неоднородность межатомных расстояний, что не позволяет изучать контекстно-зависимые представления на разных масштабах.
Чтобы решить эти проблемы, авторы придумали 3D-Transformer, вариант трансформера для молекулярных представлений, который включает трехмерную пространственную информацию. 3D-Transformer работает на полносвязных графах с прямыми связями между атомами. Чтобы справиться с неоднородностью межатомных расстояний, они разработали разномасштабный модуль self-attention.
Статья
Код
#ScientificML #chemistry #transformers #3d
Смотрите какая крутая штука!!! Кто-то натренировал CLIP на извлечение мест с космоснимков по свободному текстовому запросу! Вот тут демка
Кидайте в комменты свои лучшие запросы-ответы
#ScientificML #earthscience #CLIP
Кидайте в комменты свои лучшие запросы-ответы
#ScientificML #earthscience #CLIP
Искусственный интеллект предсказывает экспрессию генов.
В новой работе от DeepMind описывается архитектура Enformer, основанная на трансформерах. Эта архитектура способствует развитию генетических исследований, улучшая способность предсказывать, как последовательность ДНК влияет на экспрессию генов.
Блог-пост
Статья в Nature
Код
#ScientificML #biology #medicine
В новой работе от DeepMind описывается архитектура Enformer, основанная на трансформерах. Эта архитектура способствует развитию генетических исследований, улучшая способность предсказывать, как последовательность ДНК влияет на экспрессию генов.
Блог-пост
Статья в Nature
Код
#ScientificML #biology #medicine
Patches are all you need? 🤷
«Первая нейронная сеть, которая достигает 2х целей одновременно - 80++% на ImageNet Top-1 и влезает в один твит»
Сама нейронка - это очередная вариация на тему Conv-Mixers про которые я писал тут.
Авторы пока не известны (статья ещё на ревью), но про то насколько это круто высказались многие известные исследователи, включая Andrej Karpathy (Head of AI in Tesla).
Статья
#images
«Первая нейронная сеть, которая достигает 2х целей одновременно - 80++% на ImageNet Top-1 и влезает в один твит»
Сама нейронка - это очередная вариация на тему Conv-Mixers про которые я писал тут.
Авторы пока не известны (статья ещё на ревью), но про то насколько это круто высказались многие известные исследователи, включая Andrej Karpathy (Head of AI in Tesla).
Статья
#images
Molecule3D - это новый датасет с точными геометриями основного состояния приблизительно 4 миллионов молекул, полученных на основе density functional theory (DFT).
Датасет также снабжён набор программных инструментов для обработки данных, разбиения, обучения, оценки и т.д.
Датасет
Статья
#ScientificML #graphs #chemistry #datasets
Датасет также снабжён набор программных инструментов для обработки данных, разбиения, обучения, оценки и т.д.
Датасет
Статья
#ScientificML #graphs #chemistry #datasets
Летняя школа по статистической физике и машинному обучению
Школа нацелена в первую очередь на растущую аудиторию физиков-теоретиков, прикладных математиков, компьютерщиков и коллег из других вычислительных областей, интересующихся машинным обучением, нейронными сетями и анализом высокоразмерных данных. На школе будут освещаться основы и границы high-dimensional статистики, машинного обучения, теории вычислений и статистического обучения, а также смежная математика и теория вероятностей.
Подробности
#courses #physics
Школа нацелена в первую очередь на растущую аудиторию физиков-теоретиков, прикладных математиков, компьютерщиков и коллег из других вычислительных областей, интересующихся машинным обучением, нейронными сетями и анализом высокоразмерных данных. На школе будут освещаться основы и границы high-dimensional статистики, машинного обучения, теории вычислений и статистического обучения, а также смежная математика и теория вероятностей.
Подробности
#courses #physics
Deep Neural Networks and Tabular Data: A Survey
Гетерогенные табличные данные являются наиболее часто используемой формой данных в науке и необходимы для многочисленных критически важных и требовательных к вычислениям приложений. На однородных наборах данных глубокие нейронные сети неоднократно демонстрировали отличную производительность и поэтому получили широкое распространение. Однако их применение для моделирования табличных данных (вывод или генерация) остается весьма проблематичным. В данной работе представлен обзор современных методов глубокого обучения для табличных данных.
Методы разделили на три группы: преобразования данных, специализированные архитектуры и модели регуляризации. По каждой группе предоставлен обзор основных подходов.
Основной вклад работы заключается в рассмотрении основных направлений исследований и существующих методологий в этой области, а также в выделении соответствующих проблем и открытых исследовательских вопросов.
Насколько я понимаю, это первый углубленный взгляд на подходы глубокого обучения для табличных данных. Работа может послужить ценной отправной точкой и руководством для исследователей и практиков, заинтересованных в глубоком обучении с использованием табличных данных.
Статья
#tabular #tables
Гетерогенные табличные данные являются наиболее часто используемой формой данных в науке и необходимы для многочисленных критически важных и требовательных к вычислениям приложений. На однородных наборах данных глубокие нейронные сети неоднократно демонстрировали отличную производительность и поэтому получили широкое распространение. Однако их применение для моделирования табличных данных (вывод или генерация) остается весьма проблематичным. В данной работе представлен обзор современных методов глубокого обучения для табличных данных.
Методы разделили на три группы: преобразования данных, специализированные архитектуры и модели регуляризации. По каждой группе предоставлен обзор основных подходов.
Основной вклад работы заключается в рассмотрении основных направлений исследований и существующих методологий в этой области, а также в выделении соответствующих проблем и открытых исследовательских вопросов.
Насколько я понимаю, это первый углубленный взгляд на подходы глубокого обучения для табличных данных. Работа может послужить ценной отправной точкой и руководством для исследователей и практиков, заинтересованных в глубоком обучении с использованием табличных данных.
Статья
#tabular #tables
Localizing Objects with Self-Supervised Transformers and no Labels 🏷
Аннотация или labelling данных, довольно нудное и трудоёмкое занятие.
В статье предлагают простой подход к решению этой проблемы. Давайте научимся локализоваться объекты в режиме self-supervised. В качестве нейросети - используют трансформер (ViT, про который я писал тут).
Авторы сравниваются с SOTA обнаружения объектов, превосходят на 8 баллов CorLoc на PASCAL VOC 2012. Более того, показывают многообещающие результаты в задаче обнаружения объектов без наблюдения.
Статья
Код
#SSL #transformer #detection
Аннотация или labelling данных, довольно нудное и трудоёмкое занятие.
В статье предлагают простой подход к решению этой проблемы. Давайте научимся локализоваться объекты в режиме self-supervised. В качестве нейросети - используют трансформер (ViT, про который я писал тут).
Авторы сравниваются с SOTA обнаружения объектов, превосходят на 8 баллов CorLoc на PASCAL VOC 2012. Более того, показывают многообещающие результаты в задаче обнаружения объектов без наблюдения.
Статья
Код
#SSL #transformer #detection
Обновления по графовым сетям, которые сейчас активно исследуются для биологических и химических целей.
(1) На YouTube выложили лекцию профессора Макса Веллинга (Max Welling) по графовым нейронным сетям для симуляции молекул.
(2) умельцы собрали Colab блокнот по обучению графовой нейронной сети для классификации молекул на основе их биологической активности. В блокноте разбираются аспекты использования Jraph (JAX библиотеки для графов).
#ScientificML #gnn #graphs #biology #chemistry
(1) На YouTube выложили лекцию профессора Макса Веллинга (Max Welling) по графовым нейронным сетям для симуляции молекул.
(2) умельцы собрали Colab блокнот по обучению графовой нейронной сети для классификации молекул на основе их биологической активности. В блокноте разбираются аспекты использования Jraph (JAX библиотеки для графов).
#ScientificML #gnn #graphs #biology #chemistry
Попалась статья по материаловедению и ML. Сделано Гуглом - Finding Complex Metal Oxides for Technology Advancement. В связи с чем вопрос, кто-нибудь в канале занимается материаловедением?
#ScientificML #materials
#ScientificML #materials
This media is not supported in your browser
VIEW IN TELEGRAM
Мы (мы это я, автор канала Артемий) тут совместно с MSU.ai и брендом украшений MONOLAMA выпустили коллекцию брошек сгенерированных нейросетью VQGAN+CLIP.
Подробнее о проекте почитать можно тут, а заказать себе брошку тут.
#этополюбви
Подробнее о проекте почитать можно тут, а заказать себе брошку тут.
#этополюбви
High-throughput single-cell quantification of hundreds of proteins using conventional flow cytometry and machine learning
Современные иммунологические исследования все чаще требуют проведения многомерных анализов для понимания сложной среды типов клеток, составляющих микросреду тканей при заболеваниях. Для достижения этой цели авторы разработали Infinity Flow, объединяющий сотни перекрывающихся панелей проточной цитометрии с использованием машинного обучения для одновременного анализа коэкспрессии сотен поверхностно экспрессируемых белков на миллионах отдельных клеток.
В этом исследовании они демонстрируют, что этот подход позволяет провести всесторонний анализ клеточного состава устойчивого состояния мышиного легкого и выявить ранее неизвестную клеточную гетерогенность в легких мышей, несущих метастазы меланомы.
Infinity Flow - это хорошо масштабируемое, недорогое и доступное решение для одноклеточной протеомики в сложных тканях.
Статья в Science
#ScientificML #immunology #medicine
Современные иммунологические исследования все чаще требуют проведения многомерных анализов для понимания сложной среды типов клеток, составляющих микросреду тканей при заболеваниях. Для достижения этой цели авторы разработали Infinity Flow, объединяющий сотни перекрывающихся панелей проточной цитометрии с использованием машинного обучения для одновременного анализа коэкспрессии сотен поверхностно экспрессируемых белков на миллионах отдельных клеток.
В этом исследовании они демонстрируют, что этот подход позволяет провести всесторонний анализ клеточного состава устойчивого состояния мышиного легкого и выявить ранее неизвестную клеточную гетерогенность в легких мышей, несущих метастазы меланомы.
Infinity Flow - это хорошо масштабируемое, недорогое и доступное решение для одноклеточной протеомики в сложных тканях.
Статья в Science
#ScientificML #immunology #medicine
Forwarded from Denis Sexy IT 🤖
Наткнулся на прикольную нейронку аля социальный проект у которой на днях опубликовали модельки:
Алгоритм пытается показать зрителю, как выглядело бы фото если бы город затопило в результате глобального потепления (Внутри GAN + карта глубины).
Я попробовал поиграться и прогнал через нейронку 10 городов-миллионников РФ.
Мне кажется как концепт выглядит довольно доходчиво, кстати, подобное приложение я уже видел для AR, но там графика похуже.
🌊 Тут я собрал Colab, можете поиграться | Тут исходный код
P.S. Если будете играться, то лучше побольше фотографий прогнать, чтобы было из чего потом выбирать, я выбрал самые аккуратные
Алгоритм пытается показать зрителю, как выглядело бы фото если бы город затопило в результате глобального потепления (Внутри GAN + карта глубины).
Я попробовал поиграться и прогнал через нейронку 10 городов-миллионников РФ.
Мне кажется как концепт выглядит довольно доходчиво, кстати, подобное приложение я уже видел для AR, но там графика похуже.
🌊 Тут я собрал Colab, можете поиграться | Тут исходный код
P.S. Если будете играться, то лучше побольше фотографий прогнать, чтобы было из чего потом выбирать, я выбрал самые аккуратные