Недавно вышла статья, в которой утверждалось, что чем крупнее модель GPT - тем более неправдивые ответы она выдает на заданые вопросы. На основании этой статьи, журналист из New York Times начал хайповать на теме: “аааа, мы знали! все эти ваши GPT до добра не доведут!”. Но только оказалось, что в статье использовался датасет, который был специальным образом сконструирован так, что бы GPT выдавала конспирологические ответы.
По этому поводу у Яника вышел отличный разгон, советую всем посмотреть!
#gpt
По этому поводу у Яника вышел отличный разгон, советую всем посмотреть!
#gpt
Language Models as Zero-Shot Planners
Большие языковые модели (LLM), такие как GPT-3 и Codex, могут планировать действия для воплощенных агентов (embodied - ну всякие там роботы и тд),
даже без дополнительного обучения.
То есть ты говоришь GPT:
- Алиса, сделай завтрак!
А она это преобразует в последовательность действий для робота:
- дойди до холодильника
- открой холодильник
- и тд
📎 Статья
🖥 Код
🦸♀️ Проект
#gpt #transformer #reasoning
Большие языковые модели (LLM), такие как GPT-3 и Codex, могут планировать действия для воплощенных агентов (embodied - ну всякие там роботы и тд),
даже без дополнительного обучения.
То есть ты говоришь GPT:
- Алиса, сделай завтрак!
А она это преобразует в последовательность действий для робота:
- дойди до холодильника
- открой холодильник
- и тд
📎 Статья
🖥 Код
🦸♀️ Проект
#gpt #transformer #reasoning
OpenAI добавила возможность получать эмбеддинги текста или кода напрямую из своего API
Эмбеддинги - это числовые представления каких-то понятий (например слов или кусочков кода), преобразованные в последовательности чисел (например [1.,…,2.]), которые облегчают компьютеру понимание отношений между этими понятиями.
Эмбеддинги полезны при работе с естественным языком и кодом, поскольку их можно легко использовать и сравнивать с другими моделями машинного обучения и алгоритмами, такими как кластеризация или поиск.
То есть получается, берём например текст -> прогоняем его через OpenAI API -> получаем эмбеддинг -> и можем его использовать с любыми моделями машинного обучения (не только с OpenAI, а то получилось бы еще одна «экосистема» по типу Apple).
Для тех, кто потихонечку вкатывается в NLP рекомендую почитать блог-пост. Там простым и понятным языком написано.
📸 Блог-пост
📎 Статья
#gpt #nlp #basics
Эмбеддинги - это числовые представления каких-то понятий (например слов или кусочков кода), преобразованные в последовательности чисел (например [1.,…,2.]), которые облегчают компьютеру понимание отношений между этими понятиями.
Эмбеддинги полезны при работе с естественным языком и кодом, поскольку их можно легко использовать и сравнивать с другими моделями машинного обучения и алгоритмами, такими как кластеризация или поиск.
То есть получается, берём например текст -> прогоняем его через OpenAI API -> получаем эмбеддинг -> и можем его использовать с любыми моделями машинного обучения (не только с OpenAI, а то получилось бы еще одна «экосистема» по типу Apple).
Для тех, кто потихонечку вкатывается в NLP рекомендую почитать блог-пост. Там простым и понятным языком написано.
📸 Блог-пост
📎 Статья
#gpt #nlp #basics