Clustering: K-means and Hierarchical
🔗 Clustering: K-means and Hierarchical
A friendly description of K-means clustering and hierarchical clustering with simple examples. No math is needed, only a visual mind and a will to learn.
🔗 Clustering: K-means and Hierarchical
A friendly description of K-means clustering and hierarchical clustering with simple examples. No math is needed, only a visual mind and a will to learn.
YouTube
Clustering: K-means and Hierarchical
Announcement: New Book by Luis Serrano! Grokking Machine Learning. bit.ly/grokkingML
40% discount code: serranoyt
A friendly description of K-means clustering and hierarchical clustering with simple examples. No math is needed, only a visual mind and a will…
40% discount code: serranoyt
A friendly description of K-means clustering and hierarchical clustering with simple examples. No math is needed, only a visual mind and a will…
https://habr.com/ru/post/437888/
Захват сигнала мышечной активности в систему машинного обучения
#machinelearning #neuralnets #deeplearning #машинноеобучение
Наш телеграмм канал - https://t.me/ai_machinelearning_big_data
Захват сигнала мышечной активности в систему машинного обучения
#machinelearning #neuralnets #deeplearning #машинноеобучение
Наш телеграмм канал - https://t.me/ai_machinelearning_big_data
Хабр
Захват сигнала мышечной активности в систему машинного обучения
Около полугода назад ко мне пришла идея создания открытого фреймворка для нейроинтерфейсов. На данном видео захват ЭМГ сигнала мышц происходит с помощью восьмиканального ЭМГ датчика на...
https://habr.com/ru/post/437818/
Учим компьютер различать звуки: знакомство с конкурсом DCASE и сборка своего аудио классификатора за 30 минут
#machinelearning #neuralnets #deeplearning #машинноеобучение
Наш телеграмм канал - https://t.me/ai_machinelearning_big_data
Учим компьютер различать звуки: знакомство с конкурсом DCASE и сборка своего аудио классификатора за 30 минут
#machinelearning #neuralnets #deeplearning #машинноеобучение
Наш телеграмм канал - https://t.me/ai_machinelearning_big_data
Хабр
Учим компьютер различать звуки: знакомство с конкурсом DCASE и сборка своего аудио классификатора за 30 минут
Статья написана совместно с ananaskelly . Введение Всем привет, хабр! Работая в Центре Речевых Технологий в Санкт-Петербурге, мы накопили немного опыта в решении задач классификации и детектирования...
How to Lift the Veil Off Hidden Algorithms
In the absence of rules around algorithms, activists, lawyers, and tech workers are hacking transparency through other means
🔗 How to Lift the Veil Off Hidden Algorithms – Fast Company – Medium
In the absence of rules around algorithms, activists, lawyers, and tech workers are hacking transparency through other means
In the absence of rules around algorithms, activists, lawyers, and tech workers are hacking transparency through other means
🔗 How to Lift the Veil Off Hidden Algorithms – Fast Company – Medium
In the absence of rules around algorithms, activists, lawyers, and tech workers are hacking transparency through other means
Medium
How to Lift the Veil Off Hidden Algorithms – Fast Company – Medium
In the absence of rules around algorithms, activists, lawyers, and tech workers are hacking transparency through other means
🔗 Visualising Machine Learning Datasets with Google’s FACETS.
An open source tool from Google to easily learn patterns from large amounts of data
An open source tool from Google to easily learn patterns from large amounts of data
Towards Data Science
Visualising Machine Learning Datasets with Google’s FACETS.
An open source tool from Google to easily learn patterns from large amounts of data
🎥 Machine Learning инженер в США | Что и где учить по машинному обучению
👁 82 раз ⏳ 1137 сек.
👁 82 раз ⏳ 1137 сек.
Михаил Ольховский – Machine Learning инженер в Postmates – в этом видео рассказал о своем пути в программирование и поделился полезными онлайн ресурсами по изучению машинного обучение. Приятного просмотра!
Спасибо за просмотр и лайк!
Не забудьте подписаться на канал, чтобы не пропустить новые выпуски.
Запись на личную консультацию – pb@progblog.tv
-визовые вопросы,
-способы поиски работы в США,
-прохождение собеседований,
-составление резюме,
-заполнение LinkedIn-профиля,
-учеба в США по специальност
Vk
Machine Learning инженер в США | Что и где учить по машинному обучению
Михаил Ольховский – Machine Learning инженер в Postmates – в этом видео рассказал о своем пути в программирование и поделился полезными онлайн ресурсами по изучению машинного обучение. Приятного просмотра!
Спасибо за просмотр и лайк!
Не забудьте подписаться…
Спасибо за просмотр и лайк!
Не забудьте подписаться…
Everything you need to know about Scatter Plots for Data Visualisation
https://towardsdatascience.com/everything-you-need-to-know-about-scatter-plots-for-data-visualisation-924144c0bc5?source=collection_home---4------0---------------------
https://towardsdatascience.com/everything-you-need-to-know-about-scatter-plots-for-data-visualisation-924144c0bc5?source=collection_home---4------0---------------------
Towards Data Science
Everything you need to know about Scatter Plots for Data Visualisation
If you’re a Data Scientist there’s no doubt that you’ve worked with scatter plots before. Despite their simplicity, scatter plots are a…
https://habr.com/ru/company/sibur_official/blog/437974/
Как победить в цифровом WorldSkills? На практическом примере
#machinelearning #neuralnets #deeplearning #машинноеобучение
Наш телеграмм канал - https://t.me/ai_machinelearning_big_data
Как победить в цифровом WorldSkills? На практическом примере
#machinelearning #neuralnets #deeplearning #машинноеобучение
Наш телеграмм канал - https://t.me/ai_machinelearning_big_data
Хабр
Как победить в цифровом WorldSkills? На практическом примере
Привет, Хабр! В декабре наш коллега от направления «Продвинутая аналитика» Леонид Шерстюк занял первое место в компетенции Машинное обучение и большие данные в...
A Unified Theory of Early Visual Representations from Retina to Cortex through Anatomically Constrained Deep CNNs
Paper https://arxiv.org/abs/1901.00945
#Neurons #Cognition #MachineLearning
🔗 A Unified Theory of Early Visual Representations from Retina to Cortex through Anatomically Constrai
The visual system is hierarchically organized to process visual information in successive stages. Neural representations vary drastically across the first stages of visual processing: at the output of the retina, ganglion cell receptive fields (RFs) exhibit a clear antagonistic center-surround structure, whereas in the primary visual cortex, typical RFs are sharply tuned to a precise orientation. There is currently no unified theory explaining these differences in representations across layers. Here, using a deep convolutional neural network trained on image recognition as a model of the visual system, we show that such differences in representation can emerge as a direct consequence of different neural resource constraints on the retinal and cortical networks, and we find a single model from which both geometries spontaneously emerge at the appropriate stages of visual processing. The key constraint is a reduced number of neurons at the retinal output, consistent with the anatomy of the optic nerve as a stri
Paper https://arxiv.org/abs/1901.00945
#Neurons #Cognition #MachineLearning
🔗 A Unified Theory of Early Visual Representations from Retina to Cortex through Anatomically Constrai
The visual system is hierarchically organized to process visual information in successive stages. Neural representations vary drastically across the first stages of visual processing: at the output of the retina, ganglion cell receptive fields (RFs) exhibit a clear antagonistic center-surround structure, whereas in the primary visual cortex, typical RFs are sharply tuned to a precise orientation. There is currently no unified theory explaining these differences in representations across layers. Here, using a deep convolutional neural network trained on image recognition as a model of the visual system, we show that such differences in representation can emerge as a direct consequence of different neural resource constraints on the retinal and cortical networks, and we find a single model from which both geometries spontaneously emerge at the appropriate stages of visual processing. The key constraint is a reduced number of neurons at the retinal output, consistent with the anatomy of the optic nerve as a stri
Supervised vs Unsupervised vs Reinforcement Learning | Data Science Certification Training | Edureka
🔗 Supervised vs Unsupervised vs Reinforcement Learning | Data Science Certification Training | Edureka
(** Python Data Science Training: https://www.edureka.co/python **) In this video on Supervised vs Unsupervised vs Reinforcement learning, we’ll be discussin...
🔗 Supervised vs Unsupervised vs Reinforcement Learning | Data Science Certification Training | Edureka
(** Python Data Science Training: https://www.edureka.co/python **) In this video on Supervised vs Unsupervised vs Reinforcement learning, we’ll be discussin...
YouTube
Supervised vs Unsupervised vs Reinforcement Learning | Data Science Certification Training | Edureka
🔥 Python Data Science Training (Use Code "𝐘𝐎𝐔𝐓𝐔𝐁𝐄𝟐𝟎"): https://www.edureka.co/data-science-python-certification-course
In this video on Supervised vs Unsupervised vs Reinforcement learning, we’ll be discussing the types of machine learning and we’ll differentiate…
In this video on Supervised vs Unsupervised vs Reinforcement learning, we’ll be discussing the types of machine learning and we’ll differentiate…
Building a Predictive Model with R in SQL Server Machine Learning Services
🔗 Building a Predictive Model with R in SQL Server Machine Learning Services
Free trainings every Tuesday at 11am EST: http://pragmaticworks.com/Training/Courses#type=Free This webinar will discuss R and Python integration with SQL Se...
🔗 Building a Predictive Model with R in SQL Server Machine Learning Services
Free trainings every Tuesday at 11am EST: http://pragmaticworks.com/Training/Courses#type=Free This webinar will discuss R and Python integration with SQL Se...
YouTube
Building a Predictive Model with R in SQL Server Machine Learning Services
Free trainings every Tuesday at 11am EST: http://pragmaticworks.com/Training/Courses#type=Free This webinar will discuss R and Python integration with SQL Se...
Начинаем работу с Azure Machine Learning service
Сегодня рассмотрим нашу пятую итерацию по созданию продукта для машинного обучения. Чтобы подойти к этой теме, кратко напомним о предыдущих продуктах и их состоянии на текущий момент. Рассмотрим только полностью интегрированные решения, которые позволяют пройти путь от расчета модели до использования в реальных кейсах в одном полноценном продукте.
🔗 Начинаем работу с Azure Machine Learning service
Сегодня рассмотрим нашу пятую итерацию по созданию продукта для машинного обучения. Чтобы подойти к этой теме, кратко напомним о предыдущих продуктах и их...
Сегодня рассмотрим нашу пятую итерацию по созданию продукта для машинного обучения. Чтобы подойти к этой теме, кратко напомним о предыдущих продуктах и их состоянии на текущий момент. Рассмотрим только полностью интегрированные решения, которые позволяют пройти путь от расчета модели до использования в реальных кейсах в одном полноценном продукте.
🔗 Начинаем работу с Azure Machine Learning service
Сегодня рассмотрим нашу пятую итерацию по созданию продукта для машинного обучения. Чтобы подойти к этой теме, кратко напомним о предыдущих продуктах и их...
Хабр
Начинаем работу с Azure Machine Learning service
Сегодня рассмотрим нашу пятую итерацию по созданию продукта для машинного обучения. Чтобы подойти к этой теме, кратко напомним о предыдущих продуктах и их состоя...
I Built My Own Self-Driving Car. Part #1
In this part of article I am going to build a very basic car detection classifier using Python and OpenCV. There is a variety of different object detection and classification techniques and I am going to pay particular attention to the use of Haar Cascades. However, the Haar Cascade classification itself would be covered very briefly in this particular article.
#programming #IT #artificialintellegence #developer #HaarCascade #Python #OpenCV #MadDevs
https://blog.maddevs.io/i-built-my-own-self-driving-car-part-1-4478551ee205
🔗 I Built My Own Self-Driving Car. Part #1 – Mad Devs
In this part of article I am going to build a very basic car detection classifier using Python and OpenCV. There is a variety of different object detection and classification techniques and I am going to pay particular attention to the use of Haar Cascades. However, the Haar Cascade classification itself would be covered very briefly in this particular article.
#programming #IT #artificialintellegence #developer #HaarCascade #Python #OpenCV #MadDevs
https://blog.maddevs.io/i-built-my-own-self-driving-car-part-1-4478551ee205
🔗 I Built My Own Self-Driving Car. Part #1 – Mad Devs
Другой GitHub: репозитории по Data Science, визуализации данных и глубокому обучению
Наш телеграмм канал - https://t.me/ai_machinelearning_big_data
🔗 Другой GitHub: репозитории по Data Science, визуализации данных и глубокому обучению
Наш телеграмм канал - https://t.me/ai_machinelearning_big_data
🔗 Другой GitHub: репозитории по Data Science, визуализации данных и глубокому обучению
Telegram
Machinelearning
Погружаемся в машинное обучение и Data Science
Показываем как запускать любые LLm на пальцах.
По всем вопросам - @haarrp
@itchannels_telegram -🔥best channels
Реестр РКН: clck.ru/3Fmqri
Показываем как запускать любые LLm на пальцах.
По всем вопросам - @haarrp
@itchannels_telegram -🔥best channels
Реестр РКН: clck.ru/3Fmqri
Machine Learning with TensorFlow
Наш телеграмм канал - https://t.me/ai_machinelearning_big_data
📝 Machine Learning with TensorFlow.pdf - 💾6 063 043
Наш телеграмм канал - https://t.me/ai_machinelearning_big_data
📝 Machine Learning with TensorFlow.pdf - 💾6 063 043
🎥 Tiresias: Predicting Security Events Through Deep Learning
👁 1 раз ⏳ 1427 сек.
👁 1 раз ⏳ 1427 сек.
Previous research in predicting malicious events only looked at binary outcomes (eg. whether an attack would happen or not), but not at the specific steps that an attacker would undertake. To fill this gap we present Tiresias xspace, a system that leverages Recurrent Neural Networks (RNNs) to predict future events on a machine, based on previous observations.
Read this paper in the ACM Digital Library: https://dl.acm.org/citation.cfm?id=3243811
Vk
Tiresias: Predicting Security Events Through Deep Learning
Previous research in predicting malicious events only looked at binary outcomes (eg. whether an attack would happen or not), but not at the specific steps that an attacker would undertake. To fill this gap we present Tiresias xspace, a system that leverages…
🎥 10 глупых вопросов РУКОВОДИТЕЛЮ ЯНДЕКС.ПОИСКА
👁 6 раз ⏳ 1173 сек.
👁 6 раз ⏳ 1173 сек.
Новый гость "10 глупых вопросов" – руководитель Поиска Яндекса Андрей Стыскин. Мы задали Андрею самые глупые вопросы о работе Поиска, личных данных и получили на них умные ответы.
Подписка Яндекс.Плюс на месяц (пробный период) для всех подписчиков канала ЖИЗА: https://ya.cc/52uOI
ЖИЗА в Instagram: https://www.instagram.com/zhiza_show
FAQ – почему мы не озвучиваем вопросы: https://goo.gl/X1mJZV
Другие выпуски «10 глупых вопросов»:
-ветеринар https://goo.gl/WBjJQd
-мультипликатор https://goo.gl/n7obfz
-пр
Vk
10 глупых вопросов РУКОВОДИТЕЛЮ ЯНДЕКС.ПОИСКА
Новый гость "10 глупых вопросов" – руководитель Поиска Яндекса Андрей Стыскин. Мы задали Андрею самые глупые вопросы о работе Поиска, личных данных и получили на них умные ответы.
Подписка Яндекс.Плюс на месяц (пробный период) для всех подписчиков канала…
Подписка Яндекс.Плюс на месяц (пробный период) для всех подписчиков канала…
🎥 Neural networks interactively - right in your browser! - Piotr Migdał - code::dive 2018
👁 1 раз ⏳ 3840 сек.
👁 1 раз ⏳ 3840 сек.
Deep learning (artificial neural networks) is progressing at a rapid pace. In the last few years, image recognition performance went from not useful to on a par with human level. Lately, AlphaGo Zero not only beat human masters, but was able to do so entirely learning by playing with itself. And it keeps going; something that was an original discovery 6 months ago may have become an industry baseline.
Moreover, it is relatively easy to start using deep learning - using Python libraries such as Keras or PyT
Vk
Neural networks interactively - right in your browser! - Piotr Migdał - code::dive 2018
Deep learning (artificial neural networks) is progressing at a rapid pace. In the last few years, image recognition performance went from not useful to on a par with human level. Lately, AlphaGo Zero not only beat human masters, but was able to do so entirely…