🎥 Метаобучение в AUTOML: Как строить модели быстрее?
👁 1 раз ⏳ 1919 сек.
👁 1 раз ⏳ 1919 сек.
Мероприятие: MEETUP день 1
Дата проведения: 23.05.2019
Раскрыта тема доклада:
Мета-обучение в AUTOML.
Как строить модели быстрее?
Спикер: Рыжков Александр
Лаборатория AI Сбербанка
Vk
Метаобучение в AUTOML: Как строить модели быстрее?
Мероприятие: MEETUP день 1
Дата проведения: 23.05.2019
Раскрыта тема доклада:
Мета-обучение в AUTOML.
Как строить модели быстрее?
Спикер: Рыжков Александр
Лаборатория AI Сбербанка
Дата проведения: 23.05.2019
Раскрыта тема доклада:
Мета-обучение в AUTOML.
Как строить модели быстрее?
Спикер: Рыжков Александр
Лаборатория AI Сбербанка
Money Machines: An Interview With an Anonymous Algorithmic Trader
🔗 Money Machines: An Interview With an Anonymous Algorithmic Trader
An insider explains how algorithms are rewiring finance
🔗 Money Machines: An Interview With an Anonymous Algorithmic Trader
An insider explains how algorithms are rewiring finance
Medium
Money Machines: An Interview With an Anonymous Algorithmic Trader
An insider explains how algorithms are rewiring finance
🎥 How AI and machine learning will make hoteliers more money while making guests happy!
👁 1 раз ⏳ 1651 сек.
👁 1 раз ⏳ 1651 сек.
Hoteliers have been talking about collecting data for years, but have struggled to turn it into something practical. Now, the advances in technology and processing power are allowing the use of machine learning to leverage that data in meaningful ways. But, what does that really mean? Kelly McGuire sits down with Glenn and Estella while at HITEC to break all down for us.
Guest: Kelly McGuire, PhD, Revenue Management, Cornell and former Sr VP, Revenue Management at MGM
Sponsors: Cendyn and GCommerce
Vk
How AI and machine learning will make hoteliers more money while making guests happy!
Hoteliers have been talking about collecting data for years, but have struggled to turn it into something practical. Now, the advances in technology and processing power are allowing the use of machine learning to leverage that data in meaningful ways. But…
Artificial Intelligence Approaches
Authors: Yingjie Hu, Wenwen Li, Dawn Wright, Orhun Aydin, Daniel Wilson, Omar Maher, Mansour Raad
Abstract: Artificial Intelligence (AI) has received tremendous attention from academia, industry, and the general public in recent years. The integration of geography and AI, or GeoAI, provides novel approaches for addressing a variety of problems in the natural environment and our human society.
https://arxiv.org/abs/1908.10345
🔗 Artificial Intelligence Approaches
Artificial Intelligence (AI) has received tremendous attention from academia, industry, and the general public in recent years. The integration of geography and AI, or GeoAI, provides novel approaches for addressing a variety of problems in the natural environment and our human society. This entry briefly reviews the recent development of AI with a focus on machine learning and deep learning approaches. We discuss the integration of AI with geography and particularly geographic information science, and present a number of GeoAI applications and possible future directions.
Authors: Yingjie Hu, Wenwen Li, Dawn Wright, Orhun Aydin, Daniel Wilson, Omar Maher, Mansour Raad
Abstract: Artificial Intelligence (AI) has received tremendous attention from academia, industry, and the general public in recent years. The integration of geography and AI, or GeoAI, provides novel approaches for addressing a variety of problems in the natural environment and our human society.
https://arxiv.org/abs/1908.10345
🔗 Artificial Intelligence Approaches
Artificial Intelligence (AI) has received tremendous attention from academia, industry, and the general public in recent years. The integration of geography and AI, or GeoAI, provides novel approaches for addressing a variety of problems in the natural environment and our human society. This entry briefly reviews the recent development of AI with a focus on machine learning and deep learning approaches. We discuss the integration of AI with geography and particularly geographic information science, and present a number of GeoAI applications and possible future directions.
🎥 Kaggle Gendered Pronoun Resolution — Павел Петроченко, Денис Денисенко
👁 1 раз ⏳ 1426 сек.
👁 1 раз ⏳ 1426 сек.
Денис Денисенко и Павел Петроченко рассказывают про опыт участия в соревновании Kaggle Gendered Pronoun Resolution, где они заработали серебряную медаль. В команде также участвовали Константин Свиридов, Павел Плесков.
Когда мы читаем текст и встречаем местоимения, то легко понимаем, к какому существительному оно относится. Про эту нетривиальную для компьютера задачу прошёл конкурс, которому и посвящён этот доклад.
Узнать о текущих соревнованиях можно на сайте http://mltrainings.ru/
Узнать о новых трен
Vk
Kaggle Gendered Pronoun Resolution — Павел Петроченко, Денис Денисенко
Денис Денисенко и Павел Петроченко рассказывают про опыт участия в соревновании Kaggle Gendered Pronoun Resolution, где они заработали серебряную медаль. В команде также участвовали Константин Свиридов, Павел Плесков.
Когда мы читаем текст и встречаем…
Когда мы читаем текст и встречаем…
Debugging machine learning models
🔗 Debugging machine learning models
Part 1: Solving high bias and high variance
🔗 Debugging machine learning models
Part 1: Solving high bias and high variance
Medium
Debugging machine learning models
Part 1: Solving high bias and high variance
Intel выпустил свой первый чип с искусственным интеллектом для дата-центров в Израиле
https://habr.com/ru/news/t/464903/
🔗 Intel выпустил свой первый чип с искусственным интеллектом для дата-центров в Израиле
Центр Intel в Хайфе Intel сообщил новость, которую все давно ждали — компания начала выпускать свой первый чип с искусственным интеллектом, лучший, по соотноше...
https://habr.com/ru/news/t/464903/
🔗 Intel выпустил свой первый чип с искусственным интеллектом для дата-центров в Израиле
Центр Intel в Хайфе Intel сообщил новость, которую все давно ждали — компания начала выпускать свой первый чип с искусственным интеллектом, лучший, по соотноше...
Habr
Intel выпустил свой первый чип с искусственным интеллектом для дата-центров в Израиле
Центр Intel в Хайфе
Intel сообщил новость, которую все давно ждали — компания начала выпускать свой первый чип с искусственным интеллектом, лучший, по соотношению производительность/потребление...
Intel сообщил новость, которую все давно ждали — компания начала выпускать свой первый чип с искусственным интеллектом, лучший, по соотношению производительность/потребление...
Kaggle Coffee Chat: Joel Grus | Kaggle
🔗 Kaggle Coffee Chat: Joel Grus | Kaggle
In this Coffee Chat Rachael talks with Joel Grus about software engineering best practices, whether they belong in data science, if you should use TensorFlow for fizzbuzz and, of course, why he doesn't like notebooks. You can follow Joel at https://twitter.com/joelgrus SUBSCRIBE: https://www.youtube.com/c/kaggle?sub_confirmation=1&utm_medium=youtube&utm_source=channel&utm_campaign=yt-sub About Kaggle: Kaggle is the world's largest community of data scientists. Join us to compete, collaborate, learn, and
🔗 Kaggle Coffee Chat: Joel Grus | Kaggle
In this Coffee Chat Rachael talks with Joel Grus about software engineering best practices, whether they belong in data science, if you should use TensorFlow for fizzbuzz and, of course, why he doesn't like notebooks. You can follow Joel at https://twitter.com/joelgrus SUBSCRIBE: https://www.youtube.com/c/kaggle?sub_confirmation=1&utm_medium=youtube&utm_source=channel&utm_campaign=yt-sub About Kaggle: Kaggle is the world's largest community of data scientists. Join us to compete, collaborate, learn, and
YouTube
Kaggle Coffee Chat: Joel Grus | Kaggle
In this Coffee Chat Rachael talks with Joel Grus about software engineering best practices, whether they belong in data science, if you should use TensorFlow...
Matrix processing with nanophotonics
🔗 Matrix processing with nanophotonics
Explanation of how to accelerate deep learning with photonic processors with comparisons to current digital electronics approaches.
🔗 Matrix processing with nanophotonics
Explanation of how to accelerate deep learning with photonic processors with comparisons to current digital electronics approaches.
Medium
Matrix processing with nanophotonics
Explanation of how to accelerate deep learning with photonic processors with comparisons to current digital electronics approaches.
A collection of datasets ready to use with TensorFlow
https://github.com/tensorflow/datasets
🔗 tensorflow/datasets
A collection of datasets ready to use with TensorFlow - tensorflow/datasets
https://github.com/tensorflow/datasets
🔗 tensorflow/datasets
A collection of datasets ready to use with TensorFlow - tensorflow/datasets
GitHub
GitHub - tensorflow/datasets: TFDS is a collection of datasets ready to use with TensorFlow, Jax, ...
TFDS is a collection of datasets ready to use with TensorFlow, Jax, ... - tensorflow/datasets
🎥 Running our Reinforcement Learning Agent - Self-driving cars with Carla and Python p.5
👁 1 раз ⏳ 2376 сек.
👁 1 раз ⏳ 2376 сек.
Now that we've got our environment and agent, we just need to add a bit more logic to tie these together, which is what we'll be doing next to run our reinforcement learning self-driving agent.
Text-based tutorial and sample code: https://pythonprogramming.net/reinforcement-learning-self-driving-autonomous-cars-carla-python/
Channel membership: https://www.youtube.com/channel/UCfzlCWGWYyIQ0aLC5w48gBQ/join
Discord: https://discord.gg/sentdex
Support the content: https://pythonprogramming.net/support-donate
Vk
Running our Reinforcement Learning Agent - Self-driving cars with Carla and Python p.5
Now that we've got our environment and agent, we just need to add a bit more logic to tie these together, which is what we'll be doing next to run our reinforcement learning self-driving agent.
Text-based tutorial and sample code: https://pythonprogramm…
Text-based tutorial and sample code: https://pythonprogramm…
Deep Reinforcement Learning for Chatbots Using Clustered Actions and Human-Likeness Rewards
Authors: Heriberto Cuayáhuitl, Donghyeon Lee, Seonghan Ryu, Sungja Choi, Inchul Hwang, Jihie Kim
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
Abstract: Training chatbots using the reinforcement learning paradigm is challenging due to high-dimensional states, infinite action spaces and the difficulty in specifying the reward function. We address such problems using clustered actions instead of infinite actions, and a simple but promising reward function based on human-likeness scores derived from human-human dialogue data. We train Deep Reinforcement Learning (DRL) agents using chitchat data in raw text---without any manual annotations.
https://arxiv.org/abs/1908.10331
🔗 Deep Reinforcement Learning for Chatbots Using Clustered Actions and Human-Likeness Rewards
Training chatbots using the reinforcement learning paradigm is challenging due to high-dimensional states, infinite action spaces and the difficulty in specifying the reward function. We address such problems using clustered actions instead of infinite actions, and a simple but promising reward function based on human-likeness scores derived from human-human dialogue data. We train Deep Reinforcement Learning (DRL) agents using chitchat data in raw text---without any manual annotations. Experimental results using different splits of training data report the following. First, that our agents learn reasonable policies in the environments they get familiarised with, but their performance drops substantially when they are exposed to a test set of unseen dialogues. Second, that the choice of sentence embedding size between 100 and 300 dimensions is not significantly different on test data. Third, that our proposed human-likeness rewards are reasonable for training chatbots as long as they use lengthy dialogue hist
Authors: Heriberto Cuayáhuitl, Donghyeon Lee, Seonghan Ryu, Sungja Choi, Inchul Hwang, Jihie Kim
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
Abstract: Training chatbots using the reinforcement learning paradigm is challenging due to high-dimensional states, infinite action spaces and the difficulty in specifying the reward function. We address such problems using clustered actions instead of infinite actions, and a simple but promising reward function based on human-likeness scores derived from human-human dialogue data. We train Deep Reinforcement Learning (DRL) agents using chitchat data in raw text---without any manual annotations.
https://arxiv.org/abs/1908.10331
🔗 Deep Reinforcement Learning for Chatbots Using Clustered Actions and Human-Likeness Rewards
Training chatbots using the reinforcement learning paradigm is challenging due to high-dimensional states, infinite action spaces and the difficulty in specifying the reward function. We address such problems using clustered actions instead of infinite actions, and a simple but promising reward function based on human-likeness scores derived from human-human dialogue data. We train Deep Reinforcement Learning (DRL) agents using chitchat data in raw text---without any manual annotations. Experimental results using different splits of training data report the following. First, that our agents learn reasonable policies in the environments they get familiarised with, but their performance drops substantially when they are exposed to a test set of unseen dialogues. Second, that the choice of sentence embedding size between 100 and 300 dimensions is not significantly different on test data. Third, that our proposed human-likeness rewards are reasonable for training chatbots as long as they use lengthy dialogue hist
It’s a No Brainer: An Introduction to Neural Networks
🔗 It’s a No Brainer: An Introduction to Neural Networks
A gentle introduction to neural networks, now
🔗 It’s a No Brainer: An Introduction to Neural Networks
A gentle introduction to neural networks, now
Medium
It’s a No Brainer: An Introduction to Neural Networks
A gentle introduction to neural networks, now
Data Visualization GUIs с Dash и Python
Из данного видеокурса вы узнаете как создать интерфейсы визуализации интерактивных данных на основе браузера с Python и Dash.
1. Введение
2. Интерактивный пользовательский интерфейс
3. Динамический график на основе пользовательского ввода
4. Живые графики с событиями
5. Пример данных датчика транспортного средства Пример приложения
6. Анализ тональности в Python с помощью TextBlob и VADER Sentiment (+ Dash)
7. Потоковые твиты и тональности
8. Чтение из нашей базы данных тональности
9. Диаграмма тональности
🎥 Intro - Data Visualization GUIs with Dash and Python p.1
👁 1 раз ⏳ 1045 сек.
🎥 Interactive User Interface - Data Visualization GUIs with Dash and Python p.2
👁 1 раз ⏳ 497 сек.
🎥 Dynamic Graph based on User Input - Data Visualization GUIs with Dash and Python p.3
👁 1 раз ⏳ 991 сек.
🎥 Live Graphs with Events - Data Visualization GUIs with Dash and Python p.4
👁 1 раз ⏳ 1086 сек.
🎥 Vehicle sensor data App Example - Data Visualization GUIs with Dash and Python p.5
👁 1 раз ⏳ 1502 сек.
🎥 Sentiment Analysis in Python with TextBlob and VADER Sentiment (also Dash p.6)
👁 1 раз ⏳ 1405 сек.
🎥 Streaming Tweets and Sentiment - Data Visualization GUIs with Dash and Python p.7
👁 1 раз ⏳ 876 сек.
🎥 Reading from our sentiment database - Data Visualization GUIs with Dash and Python p.8
👁 1 раз ⏳ 317 сек.
🎥 Live Twitter Sentiment Graph - Data Visualization GUIs with Dash and Python p.9
👁 1 раз ⏳ 609 сек.
Из данного видеокурса вы узнаете как создать интерфейсы визуализации интерактивных данных на основе браузера с Python и Dash.
1. Введение
2. Интерактивный пользовательский интерфейс
3. Динамический график на основе пользовательского ввода
4. Живые графики с событиями
5. Пример данных датчика транспортного средства Пример приложения
6. Анализ тональности в Python с помощью TextBlob и VADER Sentiment (+ Dash)
7. Потоковые твиты и тональности
8. Чтение из нашей базы данных тональности
9. Диаграмма тональности
🎥 Intro - Data Visualization GUIs with Dash and Python p.1
👁 1 раз ⏳ 1045 сек.
How to create browser-based interactive data visualization interfaces with Python and Dash
Text tutorials and sample code: https://pythonprogrammi...
🎥 Interactive User Interface - Data Visualization GUIs with Dash and Python p.2
👁 1 раз ⏳ 497 сек.
Welcome to part two of the Dash tutorial series for making interactive data visualization user interfaces with Python. In this tutorial, we're goin...
🎥 Dynamic Graph based on User Input - Data Visualization GUIs with Dash and Python p.3
👁 1 раз ⏳ 991 сек.
Welcome to part three of the web-based data visualization with Dash tutorial series. Up to this point, we've learned how to make a simple graph and...
🎥 Live Graphs with Events - Data Visualization GUIs with Dash and Python p.4
👁 1 раз ⏳ 1086 сек.
How to create live graphs in Python with Dash, the browser-based data visualization application framework.
Text tutorials and sample code: https:/...
🎥 Vehicle sensor data App Example - Data Visualization GUIs with Dash and Python p.5
👁 1 раз ⏳ 1502 сек.
Welcome to part five of the data visualization apps in Python with Dash tutorial series. In this part, we're going to cover how to make the vehicle...
🎥 Sentiment Analysis in Python with TextBlob and VADER Sentiment (also Dash p.6)
👁 1 раз ⏳ 1405 сек.
What's going on everyone and welcome to a quick tutorial on doing sentiment analysis with Python. Today, I am going to be looking into two of the m...
🎥 Streaming Tweets and Sentiment - Data Visualization GUIs with Dash and Python p.7
👁 1 раз ⏳ 876 сек.
Hello and welcome to another tutorial with sentiment analysis, this time we're going to save our tweets, sentiment, and some other features to a da...
🎥 Reading from our sentiment database - Data Visualization GUIs with Dash and Python p.8
👁 1 раз ⏳ 317 сек.
Hello and welcome to part 3 of our sentiment analysis visualization application project with Dash. Leading up to this part, we learned how to calcu...
🎥 Live Twitter Sentiment Graph - Data Visualization GUIs with Dash and Python p.9
👁 1 раз ⏳ 609 сек.
Welcome to part 4 of our sentiment analysis application with Dash and Python. Next, we're going to tie everything together up to this point to crea...
Vk
Intro - Data Visualization GUIs with Dash and Python p.1
How to create browser-based interactive data visualization interfaces with Python and Dash Text tutorials and sample code: https://pythonprogrammi...
19 сентября в Москве пройдет конференция по применению ИИ в юридической практике Legal AI. Конференция организована OpenTalks.AI вместе с European Legal Technology Association и Infotropic Media.
На конференции пройдут выступления лучших специалистов с реальными кейсами применения ИИ, сделан обзор текущих технологий и рассмотрены проблемы регулирования, этики и права.
Также, с утра пройдет завтрак и вводная лекция "ИИ на пальцах", а вечером панельная сессия с прогнозом развития технологий ИИ от "технологических звезд" отрасли!
Сайт конференции: http://legalai.ru/
🔗 Legal.AI
Конференция по применению искусственного интеллекта в юридической практике
На конференции пройдут выступления лучших специалистов с реальными кейсами применения ИИ, сделан обзор текущих технологий и рассмотрены проблемы регулирования, этики и права.
Также, с утра пройдет завтрак и вводная лекция "ИИ на пальцах", а вечером панельная сессия с прогнозом развития технологий ИИ от "технологических звезд" отрасли!
Сайт конференции: http://legalai.ru/
🔗 Legal.AI
Конференция по применению искусственного интеллекта в юридической практике
Kaggle Inclusive Images Challenge — Павел Остяков
https://www.youtube.com/watch?v=wT8XgTrcE1U
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
🎥 Kaggle Inclusive Images Challenge — Павел Остяков
👁 1 раз ⏳ 2532 сек.
https://www.youtube.com/watch?v=wT8XgTrcE1U
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
🎥 Kaggle Inclusive Images Challenge — Павел Остяков
👁 1 раз ⏳ 2532 сек.
Павел Остяков рассказывает про соревнование Kaggle Inclusive Images Challenge. Оно являлось частью NeurIPS 2018 competition track и Павел занял в нём первое место. Задача заключалась в классификации изображений c применением на новый географический регион.
Из видео вы сможете узнать:
- Про особенности задачи и датасета
- Ограничения в соревновании
- Ключевые идеи и подходы к решению
- Как достичь хороших результатов на Kaggle
Узнать о текущих соревнованиях можно на сайте http://mltrainings.ru/
Узнать
YouTube
Kaggle Inclusive Images Challenge — Павел Остяков
Павел Остяков рассказывает про соревнование Kaggle Inclusive Images Challenge. Оно являлось частью NeurIPS 2018 competition track и Павел занял в нём первое место. Задача заключалась в классификации изображений c применением на новый географический регион.…
🎥 2019.08.22 Александр Коротков - Machine learning решение за 4 месяца
👁 1 раз ⏳ 2764 сек.
👁 1 раз ⏳ 2764 сек.
I would like to talk about my experience of developing full stack ML solution for OCR(Optical character recognition). This is a small presentation about the task, solution and result of project.
Vk
2019.08.22 Александр Коротков - Machine learning решение за 4 месяца
I would like to talk about my experience of developing full stack ML solution for OCR(Optical character recognition). This is a small presentation about the task, solution and result of project.
SQL Summer Camp: Nested & Repeated Data | Kaggle
🔗 SQL Summer Camp: Nested & Repeated Data | Kaggle
So far we've only looked at tables with a single value per cell... but what if your cells have multiple data? Or even entire nested data structures? 😱 Don't panic! Today we'll cover how to handle these like a pro. 💪 Course link: https://www.kaggle.com/learn/advanced-sql SUBSCRIBE: https://www.youtube.com/c/kaggle?sub_... About Kaggle: Kaggle is the world's largest community of data scientists. Join us to compete, collaborate, learn, and do your data science work. Kaggle's platform is the fastest way to g
🔗 SQL Summer Camp: Nested & Repeated Data | Kaggle
So far we've only looked at tables with a single value per cell... but what if your cells have multiple data? Or even entire nested data structures? 😱 Don't panic! Today we'll cover how to handle these like a pro. 💪 Course link: https://www.kaggle.com/learn/advanced-sql SUBSCRIBE: https://www.youtube.com/c/kaggle?sub_... About Kaggle: Kaggle is the world's largest community of data scientists. Join us to compete, collaborate, learn, and do your data science work. Kaggle's platform is the fastest way to g
YouTube
SQL Summer Camp: Nested & Repeated Data | Kaggle
So far we've only looked at tables with a single value per cell... but what if your cells have multiple data? Or even entire nested data structures? 😱 Don't ...
Basic Guide to Image Classification
🔗 Basic Guide to Image Classification
Understanding AI‘s ability to process images when you’ve never written a line of code before
🔗 Basic Guide to Image Classification
Understanding AI‘s ability to process images when you’ve never written a line of code before
Medium
Basic Guide to Image Classification
Understanding AI‘s ability to process images when you’ve never written a line of code before
Every Single Thing I Learned in a Data Science Boot Camp
🔗 Every Single Thing I Learned in a Data Science Boot Camp
Theory, hype, data, and models.
🔗 Every Single Thing I Learned in a Data Science Boot Camp
Theory, hype, data, and models.
Medium
Every Single Thing I Learned in a Data Science Boot Camp
Theory, hype, data, and models.