Neural Networks | Нейронные сети
11.8K subscribers
760 photos
166 videos
170 files
9.41K links
Все о машинном обучении

По всем вопросам - @notxxx1

№ 4959169263
Download Telegram
🎥 Chao Han: Deep Learning vs. Conventional Machine Learning | PyData Miami 2019
👁 1 раз 2313 сек.
Over the past few years, deep learning has given rise to a massive collection of ideas and techniques which are disruptive to conventional machine learning practices. However, are those ideas totally different from the traditional methods? Where are the connections and differences? What are the advantages and disadvantages? How practical are the deep learning methods for business applications? Chao will share her thoughts on those questions based on her readings and hands on experiments in the areas of text
🎥 [Uber Open Source] Ludwig: A Code-free Deep Learning Toolbox
👁 1 раз 1434 сек.
During this April 2019 meetup in San Francisco, Uber research scientist, Piero Molino introduces Ludwig, a deep learning toolbox that lets people without a machine learning background train prediction models without the need to write code. Ludwig is unique in its ability to help make deep learning easier to understand for non-experts and enable faster model improvement iteration cycles for experienced machine learning developers and researchers alike. By using Ludwig, experts and researchers can simplify th
🎥 Full Stack Deep Learning Course Study Group - Session 4 - Spring 2019 1080p
👁 1 раз 5889 сек.
**SUBSCRIBE AND TURN ON NOTIFICATIONS** **twimlai.com**

This video is a recap of our Full Stack Deep Learning Bootcamp Online Study Group.

In this session, we went over an overview of the boot camp and discussed lecture 11 (labs 8, 9), 12, 13, 14, 15, and a presentation on model interpretability and visualization.

It’s not too late to join the study group. Just follow these simple steps:

1. Head over to twimlai.com/meetup, and sign up for the programs you're interested in, including either of the Fast.a
🎥 Robert Alvarez: Introduction to PyTorch | PyData Miami 2019
👁 1 раз 5549 сек.
Over the past couple of years, PyTorch has been increasing in popularity in the Deep Learning community. What was initially a tool for Deep Learning researchers has been making headway in industry settings.

In this session, we will cover how to create Deep Neural Networks using the PyTorch framework on a variety of examples. The material will range from beginner - understanding what is going on "under the hood", coding the layers of our networks, and implementing backpropagation - to more advanced material
🎥 Нейронные сети — Эрол Геленбе / ПостНаука
👁 51 раз 739 сек.
Специалист по Computer and Communication Networks Эрол Геленбе об истории изучения нейронных сетей, создании языков программирования и различиях между искусственными и биологическими нейронными сетями

"Нам кажется, что нейронные сети — это новая область. На самом деле она довольно старая. Первые исследования нейронных сетей восходят к концу XIX века. Таких работ есть несколько, и первая Нобелевская премия в этой области была присуждена итальянцу Гольджи и испанцу Рамону-и-Кахалю".

Полный текст лекции: htt
🎥 Split Learning: A Resource Efficient Distributed Deep Learning Method without Sensitive Data Sharing
👁 1 раз 2527 сек.
Download Slides: https://www.datacouncil.ai/talks/split-learning-a-resource-efficient-distributed-deep-learning-method-without-sensitive-data-sharing

WANT TO EXPERIENCE A TALK LIKE THIS LIVE?

Barcelona: https://www.datacouncil.ai/barcelona
New York City: https://www.datacouncil.ai/new-york-city
San Francisco: https://www.datacouncil.ai/san-francisco
Singapore: https://www.datacouncil.ai/singapore

ABOUT THE TALK

Collaboration in health is heavily impeded by lack of trust, data sharing regulations and
🎥 «Автоматизация в финансах и медицине при помощи AI». Игорь Кауфман, DataArt
👁 2 раз 2858 сек.
Язык доклада: русский.
Язык презентации: русский.

Игорь Кауфман рассказывает о мировых трендах в области искусственного интеллекта, приводит примеры использования AI в финансах и здравоохранении, объясняет целесообразность машинного обучения.

ДОКЛАДЧИК: Игорь Кауфман, Delivery Manager, DataArt.
____________________________________________
Вакансии в DataArt: http://dataart.ua/career
Facebook: http://www.facebook.com/DataArt
Instagram: http://www.instagram.com/dataart
Twitter: http://twitter.com/DataArt_De
🎥 "Let AI plan your trip". Александра Кардаш, Eleks
👁 1 раз 1469 сек.
Язык доклада: русский.
Язык презентации: английский.

В докладе Александра рассказывает, как обойти NP-сложную задачу, используя техники машинного обучения и оптимизации. Обозревает источники данных и персонализации, как одного из основных вызовов современности.
Во время доклады Александра показывает, как методы оптимизации и машинного обучения работают в комплексе для персонализации и планирования путешествий.

ДОКЛАДЧИК: Александра Кардаш, Data Scientist at Eleks, Lviv, UA
_______________________________
🎥 Using K-Fold Cross Validation with Keras (5.2)
👁 1 раз 959 сек.
K-Fold cross validation is an important technique for deep learning. This video introduces regular k-fold cross validation for regression, as well as stratified k-fold for classification. Cross-validation can be used for a wide array of tasks, such as error estimation, early stopping, and hyper-parameter optimization.

Code for This Video:
https://github.com/jeffheaton/t81_558_deep_learning/blob/master/t81_558_class04_training.ipynb
Course Homepage: https://sites.wustl.edu/jeffheaton/t81-558/

Follow Me/