🎥 Rajat Monga: TensorFlow | Artificial Intelligence (AI) Podcast
👁 1 раз ⏳ 4258 сек.
👁 1 раз ⏳ 4258 сек.
Rajat Monga is an Engineering Director at Google, leading the TensorFlow team. This conversation is part of the Artificial Intelligence podcast at MIT and beyond. Audio podcast version is available on https://lexfridman.com/ai/
INFO:
Podcast website: https://lexfridman.com/ai
Course website: https://deeplearning.mit.edu
YouTube Playlist: http://bit.ly/2EcbaKf
OUTLINE:
0:00 - Introduction
1:17 - Google Brain early days
4:47 - TensorFlow early days - open sourcing, etc
12:53 - TensorFlow growth
22:00 - Kera
Vk
Rajat Monga: TensorFlow | Artificial Intelligence (AI) Podcast
Rajat Monga is an Engineering Director at Google, leading the TensorFlow team. This conversation is part of the Artificial Intelligence podcast at MIT and beyond. Audio podcast version is available on https://lexfridman.com/ai/
INFO:
Podcast website: ht…
INFO:
Podcast website: ht…
🎥 Deep Learning and Neural Network Introduction with Keras (3.1)
👁 1 раз ⏳ 981 сек.
👁 1 раз ⏳ 981 сек.
An introduction to neural networks and deep learning. This provides the fundamental information needed to begin study of Keras and TensorFlow. Topics such as bias neurons, activation functions, input layer, hidden layers, and neural network structure are discussed.
Code for This Video: https://github.com/jeffheaton/t81_558_deep_learning/blob/master/t81_558_class01_intro_python.ipynb
Course Homepage: https://sites.wustl.edu/jeffheaton/t81-558/
Follow Me/Subscribe:
https://www.youtube.com/user/HeatonResea
Vk
Deep Learning and Neural Network Introduction with Keras (3.1)
An introduction to neural networks and deep learning. This provides the fundamental information needed to begin study of Keras and TensorFlow. Topics such as bias neurons, activation functions, input layer, hidden layers, and neural network structure are…
«Толстый и тонкий» или как я осваивал нейросети
Искусственный интеллект
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
Часть 2
Обучение
Ну вот, всё готово! Теперь можно начинать. Начинать обучать нейросеть, а потом пожинать плоды этого её обучения. Так думается поначалу, по неопытности… Но вернёмся к теории. К устройству нейрона. Есть дендриты, есть тело нейрона, есть аксон. По дендритам мы передаём входные сигналы (рост и вес), которые имеют свои веса W1 и W2, есть тело нейрона (активационная функция) и есть аксон(выход).
https://habr.com/ru/post/454694/
🔗 «Толстый и тонкий» или как я осваивал нейросети
Часть 2 Часть 1 — здесь. Большое спасибо читателям за положительные отзывы. Обучение Ну вот, всё готово! Теперь можно начинать. Начинать обучать нейросеть, а п...
Искусственный интеллект
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
Часть 2
Обучение
Ну вот, всё готово! Теперь можно начинать. Начинать обучать нейросеть, а потом пожинать плоды этого её обучения. Так думается поначалу, по неопытности… Но вернёмся к теории. К устройству нейрона. Есть дендриты, есть тело нейрона, есть аксон. По дендритам мы передаём входные сигналы (рост и вес), которые имеют свои веса W1 и W2, есть тело нейрона (активационная функция) и есть аксон(выход).
https://habr.com/ru/post/454694/
🔗 «Толстый и тонкий» или как я осваивал нейросети
Часть 2 Часть 1 — здесь. Большое спасибо читателям за положительные отзывы. Обучение Ну вот, всё готово! Теперь можно начинать. Начинать обучать нейросеть, а п...
Anomaly detection in time series with Prophet library
🔗 Anomaly detection in time series with Prophet library
Find outliers in time series and plot in few lines of code
🔗 Anomaly detection in time series with Prophet library
Find outliers in time series and plot in few lines of code
Towards Data Science
Anomaly detection in timeseries with Prophet library
Find outliers in time series and plot in few lines of code
Машинное обучение в микрофинансах: строим скоринговую модель для клиентов с пустой кредитной историей
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
Нет кредитной истории — не дают кредиты, не дают кредиты — нет кредитной истории. Замкнутый круг какой-то. Что делать? Давайте разбираться.
Привет! Меня зовут Марк, я data scientist в компании Devim. Недавно мы запустили модель для скоринга заемщиков МФК “До Зарплаты”, у которых отсутствует кредитная история. Хочу поделиться опытом поиска данных, особенностями конструирования и интерпретации признаков.
https://habr.com/ru/post/454574/
🔗 Машинное обучение в микрофинансах: строим скоринговую модель для клиентов с пустой кредитной историе
Нет кредитной истории — не дают кредиты, не дают кредиты — нет кредитной истории. Замкнутый круг какой-то. Что делать? Давайте разбираться. Привет! Меня зовут М...
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
Нет кредитной истории — не дают кредиты, не дают кредиты — нет кредитной истории. Замкнутый круг какой-то. Что делать? Давайте разбираться.
Привет! Меня зовут Марк, я data scientist в компании Devim. Недавно мы запустили модель для скоринга заемщиков МФК “До Зарплаты”, у которых отсутствует кредитная история. Хочу поделиться опытом поиска данных, особенностями конструирования и интерпретации признаков.
https://habr.com/ru/post/454574/
🔗 Машинное обучение в микрофинансах: строим скоринговую модель для клиентов с пустой кредитной историе
Нет кредитной истории — не дают кредиты, не дают кредиты — нет кредитной истории. Замкнутый круг какой-то. Что делать? Давайте разбираться. Привет! Меня зовут М...
Хабр
Машинное обучение в микрофинансах: строим скоринговую модель для клиентов с пустой кредитной историей
Нет кредитной истории — не дают кредиты, не дают кредиты — нет кредитной истории. Замкнутый круг какой-то. Что делать? Давайте разбираться. Привет! Меня зовут Марк, я data scientist в компании Devim....
An Explicitly Relational Neural Network Architecture
🔗 An Explicitly Relational Neural Network Architecture
With a view to bridging the gap between deep learning and symbolic AI, we present a novel end-to-end neural network architecture that learns to form propositional representations with an explicitly relational structure from raw pixel data. In order to evaluate and analyse the architecture, we introduce a family of simple visual relational reasoning tasks of varying complexity. We show that the proposed architecture, when pre-trained on a curriculum of such tasks, learns to generate reusable representations that better facilitate subsequent learning on previously unseen tasks when compared to a number of baseline architectures. The workings of a successfully trained model are visualised to shed some light on how the architecture functions.
🔗 An Explicitly Relational Neural Network Architecture
With a view to bridging the gap between deep learning and symbolic AI, we present a novel end-to-end neural network architecture that learns to form propositional representations with an explicitly relational structure from raw pixel data. In order to evaluate and analyse the architecture, we introduce a family of simple visual relational reasoning tasks of varying complexity. We show that the proposed architecture, when pre-trained on a curriculum of such tasks, learns to generate reusable representations that better facilitate subsequent learning on previously unseen tasks when compared to a number of baseline architectures. The workings of a successfully trained model are visualised to shed some light on how the architecture functions.
arXiv.org
An Explicitly Relational Neural Network Architecture
With a view to bridging the gap between deep learning and symbolic AI, we present a novel end-to-end neural network architecture that learns to form propositional representations with an...
Anomaly detection in time series with Prophet library
🔗 Anomaly detection in time series with Prophet library
Find outliers in time series and plot in few lines of code
🔗 Anomaly detection in time series with Prophet library
Find outliers in time series and plot in few lines of code
Towards Data Science
Anomaly detection in timeseries with Prophet library
Find outliers in time series and plot in few lines of code
Wasserstein Style Transfer
arxiv.org/abs/1905.12828
🔗 Wasserstein Style Transfer
We propose Gaussian optimal transport for Image style transfer in an Encoder/Decoder framework. Optimal transport for Gaussian measures has closed forms Monge mappings from source to target distributions. Moreover interpolates between a content and a style image can be seen as geodesics in the Wasserstein Geometry. Using this insight, we show how to mix different target styles , using Wasserstein barycenter of Gaussian measures. Since Gaussians are closed under Wasserstein barycenter, this allows us a simple style transfer and style mixing and interpolation. Moreover we show how mixing different styles can be achieved using other geodesic metrics between gaussians such as the Fisher Rao metric, while the transport of the content to the new interpolate style is still performed with Gaussian OT maps. Our simple methodology allows to generate new stylized content interpolating between many artistic styles. The metric used in the interpolation results in different stylizations.
arxiv.org/abs/1905.12828
🔗 Wasserstein Style Transfer
We propose Gaussian optimal transport for Image style transfer in an Encoder/Decoder framework. Optimal transport for Gaussian measures has closed forms Monge mappings from source to target distributions. Moreover interpolates between a content and a style image can be seen as geodesics in the Wasserstein Geometry. Using this insight, we show how to mix different target styles , using Wasserstein barycenter of Gaussian measures. Since Gaussians are closed under Wasserstein barycenter, this allows us a simple style transfer and style mixing and interpolation. Moreover we show how mixing different styles can be achieved using other geodesic metrics between gaussians such as the Fisher Rao metric, while the transport of the content to the new interpolate style is still performed with Gaussian OT maps. Our simple methodology allows to generate new stylized content interpolating between many artistic styles. The metric used in the interpolation results in different stylizations.
🎥 #DataScience, Леонид Кулигин, Тренировка моделей машинного обучения на больших объемах данных
👁 1 раз ⏳ 2459 сек.
👁 1 раз ⏳ 2459 сек.
Леонид Кулигин
Google
Тренировка моделей машинного обучения на больших объемах данных
Объём доступных данных, как и сложность моделей машинного обучения, растёт экспоненциально. Мы поговорим про то, как работает распределённое обучение с TensorFlow, как устроен процессинг данных и какие средства доступны для профайлинга тренировки.
https://codefest.ru
Vk
#DataScience, Леонид Кулигин, Тренировка моделей машинного обучения на больших объемах данных
Леонид Кулигин
Google
Тренировка моделей машинного обучения на больших объемах данных
Объём доступных данных, как и сложность моделей машинного обучения, растёт экспоненциально. Мы поговорим про то, как работает распределённое обучение с TensorFlow, как…
Тренировка моделей машинного обучения на больших объемах данных
Объём доступных данных, как и сложность моделей машинного обучения, растёт экспоненциально. Мы поговорим про то, как работает распределённое обучение с TensorFlow, как…
🎥 TensorFlow Dev Summit 2019 Summary + Deep Diving into GANs
👁 1 раз ⏳ 6503 сек.
👁 1 раз ⏳ 6503 сек.
During the event we will watch to a couple of key talks from the recent TensorFlow Summit showing the new features of the release 2 and in particular the new tf.function and AutoGraph allowing to write graph code using natural Python syntax.
After the vew party we will feature the talk of Paolo Galeone, Google Development Expert in ML, on how to build Generative Adversarial Networks using TensorFlow 2.0.
Deep Diving into GANs: from theory to production
Tensorflow 2.0 will be a major milestone for the mos
Vk
TensorFlow Dev Summit 2019 Summary + Deep Diving into GANs
During the event we will watch to a couple of key talks from the recent TensorFlow Summit showing the new features of the release 2 and in particular the new tf.function and AutoGraph allowing to write graph code using natural Python syntax.
After the vew…
After the vew…
🎥 DeepMind Made a Math Test For Neural Networks
👁 36 раз ⏳ 301 сек.
👁 36 раз ⏳ 301 сек.
📝 The paper "Analysing Mathematical Reasoning Abilities of Neural Models" is available here:
https://arxiv.org/abs/1904.01557
❤️ Pick up cool perks on our Patreon page: https://www.patreon.com/TwoMinutePapers
🙏 We would like to thank our generous Patreon supporters who make Two Minute Papers possible:
313V, Alex Haro, Andrew Melnychuk, Angelos Evripiotis, Anthony Vdovitchenko, Brian Gilman, Bruno Brito, Bryan Learn, Christian Ahlin, Christoph Jadanowski, Claudio Fernandes, Daniel Hasegan, Dennis Abts, Eri
Vk
DeepMind Made a Math Test For Neural Networks
📝 The paper "Analysing Mathematical Reasoning Abilities of Neural Models" is available here:
https://arxiv.org/abs/1904.01557
❤️ Pick up cool perks on our Patreon page: https://www.patreon.com/TwoMinutePapers
🙏 We would like to thank our generous Patreon…
https://arxiv.org/abs/1904.01557
❤️ Pick up cool perks on our Patreon page: https://www.patreon.com/TwoMinutePapers
🙏 We would like to thank our generous Patreon…
🎥 Введение в глубокое обучение: регрессия, классификация, свёрточные нейронные сети. 2019.
👁 1 раз ⏳ 209 сек.
👁 1 раз ⏳ 209 сек.
⚡⚡⚡ Подводим итоги прошедших практических занятий по разработке нейронных сетей.
1. Что такое регрессия и какие задачи относятся к этому классу задач?
2. Что такое классификация и какие задачи относятся к этому классу задач?
3. Сравнение задач регрессий и классификаций - входные и выходные данные, функции оптимизации, функции активации, функции потерь.
4. Свёрточные нейронные сети и определение кошек / собак на изображениях.
Статья на Хабре:
https://habr.com/ru/post/454034/
Google CoLab:
https://colab.re
Vk
Введение в глубокое обучение: регрессия, классификация, свёрточные нейронные сети. 2019.
⚡⚡⚡ Подводим итоги прошедших практических занятий по разработке нейронных сетей.
1. Что такое регрессия и какие задачи относятся к этому классу задач?
2. Что такое классификация и какие задачи относятся к этому классу задач?
3. Сравнение задач регрессий…
1. Что такое регрессия и какие задачи относятся к этому классу задач?
2. Что такое классификация и какие задачи относятся к этому классу задач?
3. Сравнение задач регрессий…
🎥 Обзор конференции AAMAS 2019
👁 1 раз ⏳ 2746 сек.
👁 1 раз ⏳ 2746 сек.
В связи с быстрым развитием в области обучения с подкреплением и искусственного интеллекта все сложнее уследить за новыми статьям. Недавно прошла одна из самых важных конференции по обучению с подкреплением — Autonomous Agents and Multiagent Systems (AAMAS). В данном докладе будут упомянуты все самый интересные идеи и статьи, которые были озвучены на конференции.
На семинаре будут рассматриваться статьи из deepmind: о новых окружениях для мультиагентных систем, также будет рассмотрены способы обучения аге
Vk
Обзор конференции AAMAS 2019
В связи с быстрым развитием в области обучения с подкреплением и искусственного интеллекта все сложнее уследить за новыми статьям. Недавно прошла одна из самых важных конференции по обучению с подкреплением — Autonomous Agents and Multiagent Systems (AAMAS).…
Independent Component Analysis based on multiple data-weighting. arxiv.org/abs/1906.00028
🔗 Independent Component Analysis based on multiple data-weighting
Independent Component Analysis (ICA) - one of the basic tools in data analysis - aims to find a coordinate system in which the components of the data are independent. In this paper we present Multiple-weighted Independent Component Analysis (MWeICA) algorithm, a new ICA method which is based on approximate diagonalization of weighted covariance matrices. Our idea is based on theoretical result, which says that linear independence of weighted data (for gaussian weights) guarantees independence. Experiments show that MWeICA achieves better results to most state-of-the-art ICA methods, with similar computational time.
🔗 Independent Component Analysis based on multiple data-weighting
Independent Component Analysis (ICA) - one of the basic tools in data analysis - aims to find a coordinate system in which the components of the data are independent. In this paper we present Multiple-weighted Independent Component Analysis (MWeICA) algorithm, a new ICA method which is based on approximate diagonalization of weighted covariance matrices. Our idea is based on theoretical result, which says that linear independence of weighted data (for gaussian weights) guarantees independence. Experiments show that MWeICA achieves better results to most state-of-the-art ICA methods, with similar computational time.
arXiv.org
Independent Component Analysis based on multiple data-weighting
Independent Component Analysis (ICA) - one of the basic tools in data
analysis - aims to find a coordinate system in which the components of the data
are independent. In this paper we present...
analysis - aims to find a coordinate system in which the components of the data
are independent. In this paper we present...
Introducing TensorNetwork, an Open Source Library for Efficient Tensor Calculations
http://ai.googleblog.com/2019/06/introducing-tensornetwork-open-source.html
http://ai.googleblog.com/2019/06/introducing-tensornetwork-open-source.html
research.google
Introducing TensorNetwork, an Open Source Library for Efficient Tensor Calculati
Posted by Chase Roberts, Research Engineer, Google AI and Stefan Leichenauer, Research Scientist, X Many of the world's toughest scientific chall...
Moneyball — Linear Regression
🔗 Moneyball — Linear Regression
Using Linear Regression in Python to predict baseball season performance.
🔗 Moneyball — Linear Regression
Using Linear Regression in Python to predict baseball season performance.
Towards Data Science
Moneyball — Linear Regression
Using Linear Regression in Python to predict baseball season performance.
🎥 Childhood's End: Maturation of Deep Speech and Common Voice
👁 2 раз ⏳ 1048 сек.
👁 2 раз ⏳ 1048 сек.
#reworkDL
This presentation took place at the Deep Learning Summit, Boston on the 23 & 24 May. This presentation was given by Kelly Davis, Machine Learning Researcher at Mozilla.
More presentations and interviews from the Deep Learning Summit can be seen here on the Video Hub: http://videos.re-work.co/events/59-deep-learning-summit-boston-2019
We’ll talk about the blossoming of Deep Speech, an open deep learning based speech-to-text engine, and Common Voice, an open crowd-sourced speech corpora. We will
Vk
Childhood's End: Maturation of Deep Speech and Common Voice
#reworkDL
This presentation took place at the Deep Learning Summit, Boston on the 23 & 24 May. This presentation was given by Kelly Davis, Machine Learning Researcher at Mozilla.
More presentations and interviews from the Deep Learning Summit can be seen…
This presentation took place at the Deep Learning Summit, Boston on the 23 & 24 May. This presentation was given by Kelly Davis, Machine Learning Researcher at Mozilla.
More presentations and interviews from the Deep Learning Summit can be seen…
DeepMind Made a Math Test For Neural Networks
https://arxiv.org/abs/1904.01557
🔗 Analysing Mathematical Reasoning Abilities of Neural Models
Mathematical reasoning---a core ability within human intelligence---presents some unique challenges as a domain: we do not come to understand and solve mathematical problems primarily on the back of experience and evidence, but on the basis of inferring, learning, and exploiting laws, axioms, and symbol manipulation rules. In this paper, we present a new challenge for the evaluation (and eventually the design) of neural architectures and similar system, developing a task suite of mathematics problems involving sequential questions and answers in a free-form textual input/output format. The structured nature of the mathematics domain, covering arithmetic, algebra, probability and calculus, enables the construction of training and test splits designed to clearly illuminate the capabilities and failure-modes of different architectures, as well as evaluate their ability to compose and relate knowledge and learned processes. Having described the data generation process and its potential future expansions, we condu
https://arxiv.org/abs/1904.01557
🔗 Analysing Mathematical Reasoning Abilities of Neural Models
Mathematical reasoning---a core ability within human intelligence---presents some unique challenges as a domain: we do not come to understand and solve mathematical problems primarily on the back of experience and evidence, but on the basis of inferring, learning, and exploiting laws, axioms, and symbol manipulation rules. In this paper, we present a new challenge for the evaluation (and eventually the design) of neural architectures and similar system, developing a task suite of mathematics problems involving sequential questions and answers in a free-form textual input/output format. The structured nature of the mathematics domain, covering arithmetic, algebra, probability and calculus, enables the construction of training and test splits designed to clearly illuminate the capabilities and failure-modes of different architectures, as well as evaluate their ability to compose and relate knowledge and learned processes. Having described the data generation process and its potential future expansions, we condu
arXiv.org
Analysing Mathematical Reasoning Abilities of Neural Models
Mathematical reasoning---a core ability within human intelligence---presents some unique challenges as a domain: we do not come to understand and solve mathematical problems primarily on the back...
Advanced Topics in Deep Convolutional Neural Networks
🔗 Advanced Topics in Deep Convolutional Neural Networks
Residual networks, saliency maps, dilated convolutions, and more.
🔗 Advanced Topics in Deep Convolutional Neural Networks
Residual networks, saliency maps, dilated convolutions, and more.
Towards Data Science
Advanced Topics in Deep Convolutional Neural Networks
Residual networks, saliency maps, dilated convolutions, and more.