Neural Networks | Нейронные сети
11.9K subscribers
755 photos
163 videos
170 files
9.41K links
Все о машинном обучении

По всем вопросам - @notxxx1

№ 4959169263
Download Telegram
🎥 This is How Google’s Phone Enhances Your Photos
👁 1 раз 278 сек.
📝 The paper "Handheld Multi-frame Super-resolution" is available here:
https://sites.google.com/view/handheld-super-res/

❤️ Pick up cool perks on our Patreon page: https://www.patreon.com/TwoMinutePapers

🙏 We would like to thank our generous Patreon supporters who make Two Minute Papers possible:
313V, Alex Haro, Andrew Melnychuk, Angelos Evripiotis, Anthony Vdovitchenko, Brian Gilman, Bruno Brito, Bryan Learn, Christian Ahlin, Christoph Jadanowski, Claudio Fernandes, Dennis Abts, Eric Haddad, Eric Martel
🎥 Easy Face Recognition Tutorial With JavaScript
👁 1 раз 1312 сек.
In this video we will be setting up face recognition for any image using AI. This AI is able to recognize the name of every character in an image very quickly without much performance overhead. We will be using the Face API JS library built on Tensor Flow to setup the face recognition.

By the end of this video you will have fully functional face recognition on your site which can be used with any image. It is even easily extensible to recognize any other person by simply adding a picture of their face and
🎥 3 Limits of Artificial Intelligence
👁 6 раз 862 сек.
AI has enabled so many new opportunities for people to create a positive impact in the world by creating engineering solutions across every industry! However, AI is still evolving and we have to address its limitations as well. In this video, I'll explain 3 major limits of AI - a lack of causal reasoning, vulnerability to adversarial examples, and a lack of interpretability. I'll also explain ways to solve these limits and earn a profit doing so. The next time someone asks you what AI can't currently do, sh
​Рекомендательные системы: идеи, подходы, задачи

Наш телеграм канал - tglink.me/ai_machinelearning_big_data
Многие привыкли ставить оценку фильму на КиноПоиске или imdb после просмотра, а разделы «С этим товаром также покупали» и «Популярные товары» есть в любом интернет- магазине. Но существуют и менее привычные виды рекомендаций. В этой статье я расскажу о том, какие задачи решают рекомендательные системы, куда бежать и что гуглить.
https://habr.com/ru/company/jetinfosystems/blog/453792/

🔗 Рекомендательные системы: идеи, подходы, задачи
Многие привыкли ставить оценку фильму на КиноПоиске или imdb после просмотра, а разделы «С этим товаром также покупали» и «Популярные товары» есть в любом инте...
🎥 Азамат Бердышев - Элегантные абстракции в вычислениях машинного обучения
👁 1 раз 3967 сек.
VI DS/ML Meetup Astana

4) Абстракции в вычислениях машинного обучения.
Азамат Бердышев рассмотрит конфликт между dynamism, generics & speed в вычислениях машинного обучения. Он попытается донести, что при правильной абстракции вычислений, несмотря на то, что мы наблюдаем в Python, R, MATLAB и др., можно писать код, обладающий всеми тремя качествами.

Мы также попытаемся понять, какие из существующих ограничений софта являются фундаментальными (т.е. от железа), а какие случайными (т.е. связаны с дизайном с
​50,000 training samples

https://www.profillic.com/paper/arxiv:1905.10498

🔗 Profillic: AI research & source code to supercharge your projects
Explore state-of-the-art in machine learning, AI, and robotics research. Browse papers, source code, models, and more by topics and authors. Connect with researchers and engineers working on related problems in machine learning, deep learning, natural language processing, robotics, computer vision, data mining, neural networks, artificial intelligence/AI, data science... and explore working together on projects, github code
🎥 Stanford CS234: Reinforcement Learning | Winter 2019 | Lecture 15 - Batch Reinforcement Learning
👁 1 раз 4727 сек.
Professor Emma Brunskill, Stanford University
http://onlinehub.stanford.edu/

Professor Emma Brunskill
Assistant Professor, Computer Science
Stanford AI for Human Impact Lab
Stanford Artificial Intelligence Lab
Statistical Machine Learning Group

To follow along with the course schedule and syllabus, visit: http://web.stanford.edu/class/cs234/index.html

To get the latest news on Stanford’s upcoming professional programs in Artificial Intelligence, visit: http://learn.stanford.edu/AI.html

To view a
🎥 How Dangerous are AI and Algorithms? | Martin Ford | Rubin Report
👁 1 раз 2072 сек.
In this episode of The Rubin Report Dave Rubin talks to Martin Ford (Author and Futurist) about AI, the power of computers and robots, Deep Learning, his views on promoting Universal Basic Income, and more. **Support The Rubin Report: http://www.rubinreport.com/donate

Stay tuned for Part 2 of Dave's interview with Martin Ford coming tomorrow and the full interview airing Friday 5/31.

Subscribe to The Rubin Report: http://www.youtube.com/subscription_center?add_user=RubinReport

See Dave LIVE: https://da
🎥 Stanford CS234: Reinforcement Learning | Winter 2019 | Lecture 16 - Monte Carlo Tree Search
👁 1 раз 4031 сек.
Professor Emma Brunskill, Stanford University
http://onlinehub.stanford.edu/

Professor Emma Brunskill
Assistant Professor, Computer Science
Stanford AI for Human Impact Lab
Stanford Artificial Intelligence Lab
Statistical Machine Learning Group

To follow along with the course schedule and syllabus, visit: http://web.stanford.edu/class/cs234/index.html

To get the latest news on Stanford’s upcoming professional programs in Artificial Intelligence, visit: http://learn.stanford.edu/AI.html

To view a
🎥 Should AI Research Try to Model the Human Brain?
👁 1 раз 420 сек.
❤️ Pick up cool perks on our Patreon page: https://www.patreon.com/TwoMinutePapers

₿ Crypto and PayPal links are available below. Thank you very much for your generous support!
› PayPal: https://www.paypal.me/TwoMinutePapers
› Bitcoin: 1a5ttKiVQiDcr9j8JT2DoHGzLG7XTJccX
› Ethereum: 0xbBD767C0e14be1886c6610bf3F592A91D866d380
› LTC: LM8AUh5bGcNgzq6HaV1jeaJrFvmKxxgiXg

📝 The paper "Reinforcement Learning, Fast and Slow" is available here:
https://www.cell.com/trends/cognitive-sciences/fulltext/S1364-6613(19)30