What’s Linear About Logistic Regression
🔗 What’s Linear About Logistic Regression
How do we get from decision boundary to probabilities in Logistic Regression?
🔗 What’s Linear About Logistic Regression
How do we get from decision boundary to probabilities in Logistic Regression?
Towards Data Science
What’s Linear About Logistic Regression
How do we get from decision boundary to probabilities in Logistic Regression?
CNNs, Part 1: An Introduction to Convolutional Neural Networks
🔗 CNNs, Part 1: An Introduction to Convolutional Neural Networks
A simple guide to what CNNs are, how they work, and how to build one from scratch in Python.
🔗 CNNs, Part 1: An Introduction to Convolutional Neural Networks
A simple guide to what CNNs are, how they work, and how to build one from scratch in Python.
Towards Data Science
An Introduction to Convolutional Neural Networks
A simple guide to what CNNs are, how they work, and how to build one from scratch in Python.
🎥 Machine Learning on Source Code | Egor Bulychev | ML Conference 2018
👁 1 раз ⏳ 2048 сек.
👁 1 раз ⏳ 2048 сек.
Egor Bulychev (source|{d}) | https://mlconference.ai/speaker/egor-bulychev/
Machine Learning on Source Code (MLoSC) is an emerging and exciting domain of research which stands at the sweet spot between deep learning, natural language processing, social science and programming. We’ve accumulated petabytes of source code data that is open, yet there have been few attempts to fully leverage the knowledge that is sealed inside. This talk gives an introduction into the current trends in MLoSC and presents the t
Vk
Machine Learning on Source Code | Egor Bulychev | ML Conference 2018
Egor Bulychev (source|{d}) | https://mlconference.ai/speaker/egor-bulychev/
Machine Learning on Source Code (MLoSC) is an emerging and exciting domain of research which stands at the sweet spot between deep learning, natural language processing, social science…
Machine Learning on Source Code (MLoSC) is an emerging and exciting domain of research which stands at the sweet spot between deep learning, natural language processing, social science…
🎥 Kick-Start your Understanding of Machine Learning with Python | ML Con 2018 Spring
👁 1 раз ⏳ 1797 сек.
👁 1 раз ⏳ 1797 сек.
Dr. Andreas Bühlmeier (Dr. Bühlmeier Consulting) | https://mlconference.ai/speaker/dr-andreas-buhlmeier/
This presentation shows how to quickly build Machine Learning applications with Python and how we can understand what is happening ‘under the hood’ using Python modules as well. Two examples will be presented: unsupervised and supervised learning for text classification.
It is fascinating how fast you can build a text analyzer with Python and Scikit to then apply unsupervised learning. A common approac
Vk
Kick-Start your Understanding of Machine Learning with Python | ML Con 2018 Spring
Dr. Andreas Bühlmeier (Dr. Bühlmeier Consulting) | https://mlconference.ai/speaker/dr-andreas-buhlmeier/
This presentation shows how to quickly build Machine Learning applications with Python and how we can understand what is happening ‘under the hood’ using…
This presentation shows how to quickly build Machine Learning applications with Python and how we can understand what is happening ‘under the hood’ using…
🎥 Large Scale Distributed Deep Learning with Kubernetes Operators - Yuan Tang & Yong Tang
👁 1 раз ⏳ 1746 сек.
👁 1 раз ⏳ 1746 сек.
Large Scale Distributed Deep Learning with Kubernetes Operators - Yuan Tang, Ant Financial & Yong Tang, MobileIron
The focus of this talk is the usage of Kubernetes operators to manage and automate training process for machine learning tasks. Two open source Kubernetes operators, tf-operator and mpi-operator, will be discussed. Both operators manage training jobs for TensorFlow but they have different distribution strategies. The tf-operator fits the parameter server distribution strategy which has a cent
Vk
Large Scale Distributed Deep Learning with Kubernetes Operators - Yuan Tang & Yong Tang
Large Scale Distributed Deep Learning with Kubernetes Operators - Yuan Tang, Ant Financial & Yong Tang, MobileIron
The focus of this talk is the usage of Kubernetes operators to manage and automate training process for machine learning tasks. Two open source…
The focus of this talk is the usage of Kubernetes operators to manage and automate training process for machine learning tasks. Two open source…
🎥 Machine Learning Tutorial | What is Machine Learning | Intellipaat
👁 1 раз ⏳ 16065 сек.
👁 1 раз ⏳ 16065 сек.
Intellipaat Machine Learning Course: https://intellipaat.com/machine-learning-certification-training-course/
In this machine learning tutorial you will learn what is machine learning, machine learning algorithms like linear regression, binary classification, decision tree, random forest and unsupervised algorithm like k means clustering in detail with complete hands on demo.
Following topics are covered in this video:
00:53 - what is machine learning
04:55 - what is linear regression
20:55 - what is regres
Vk
Machine Learning Tutorial | What is Machine Learning | Intellipaat
Intellipaat Machine Learning Course: https://intellipaat.com/machine-learning-certification-training-course/
In this machine learning tutorial you will learn what is machine learning, machine learning algorithms like linear regression, binary classification…
In this machine learning tutorial you will learn what is machine learning, machine learning algorithms like linear regression, binary classification…
Paper👇:
https://arxiv.org/pdf/1905.08233.pdf
Youtube video👇:
https://www.youtube.com/watch?v=p1b5aiTrGzY&feature=youtu.be&fbclid=IwAR2Z1DgoIh_SdTuweiylm4L1aZpdSo8LV9v32XdivMcc3Q02mr7Qz1yUfwg
🔗
https://arxiv.org/pdf/1905.08233.pdf
Youtube video👇:
https://www.youtube.com/watch?v=p1b5aiTrGzY&feature=youtu.be&fbclid=IwAR2Z1DgoIh_SdTuweiylm4L1aZpdSo8LV9v32XdivMcc3Q02mr7Qz1yUfwg
🔗
YouTube
Few-Shot Adversarial Learning of Realistic Neural Talking Head Models
Statement regarding the purpose and effect of the technology
(NB: this statement reflects personal opinions of the authors and not of their organizations)
We believe that telepresence technologies in AR, VR and other media are to transform the world in the…
(NB: this statement reflects personal opinions of the authors and not of their organizations)
We believe that telepresence technologies in AR, VR and other media are to transform the world in the…
A Guide to Conda Environments
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
https://towardsdatascience.com/a-guide-to-conda-environments-bc6180fc533?source=collection_home---4------3---------------------
🔗 A Guide to Conda Environments
How to manage environments with conda for Python & R.
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
https://towardsdatascience.com/a-guide-to-conda-environments-bc6180fc533?source=collection_home---4------3---------------------
🔗 A Guide to Conda Environments
How to manage environments with conda for Python & R.
Predicting depth of moving people captured with moving cameras.
arxiv.org/abs/1904.09261
🔗 Fashion++: Minimal Edits for Outfit Improvement
Given an outfit, what small changes would most improve its fashionability? This question presents an intriguing new vision challenge. We introduce Fashion++, an approach that proposes minimal adjustments to a full-body clothing outfit that will have maximal impact on its fashionability. Our model consists of a deep image generation neural network that learns to synthesize clothing conditioned on learned per-garment encodings. The latent encodings are explicitly factorized according to shape and texture, thereby allowing direct edits for both fit/presentation and color/patterns/material, respectively. We show how to bootstrap Web photos to automatically train a fashionability model, and develop an activation maximization-style approach to transform the input image into its more fashionable self. The edits suggested range from swapping in a new garment to tweaking its color, how it is worn (e.g., rolling up sleeves), or its fit (e.g., making pants baggier). Experiments demonstrate that Fashion++ provides succes
arxiv.org/abs/1904.09261
🔗 Fashion++: Minimal Edits for Outfit Improvement
Given an outfit, what small changes would most improve its fashionability? This question presents an intriguing new vision challenge. We introduce Fashion++, an approach that proposes minimal adjustments to a full-body clothing outfit that will have maximal impact on its fashionability. Our model consists of a deep image generation neural network that learns to synthesize clothing conditioned on learned per-garment encodings. The latent encodings are explicitly factorized according to shape and texture, thereby allowing direct edits for both fit/presentation and color/patterns/material, respectively. We show how to bootstrap Web photos to automatically train a fashionability model, and develop an activation maximization-style approach to transform the input image into its more fashionable self. The edits suggested range from swapping in a new garment to tweaking its color, how it is worn (e.g., rolling up sleeves), or its fit (e.g., making pants baggier). Experiments demonstrate that Fashion++ provides succes
arXiv.org
Fashion++: Minimal Edits for Outfit Improvement
Given an outfit, what small changes would most improve its fashionability?
This question presents an intriguing new vision challenge. We introduce
Fashion++, an approach that proposes minimal...
This question presents an intriguing new vision challenge. We introduce
Fashion++, an approach that proposes minimal...
https://habr.com/ru/post/453156/
Новая «электронная платформа» — вычислительная сеть, которая будет работать на подавляющем большинстве автомобилей компании и обеспечит работу их многочисленных цифровых систем. Она столь же важна для будущего автопроизводителя, как и любая отдельная функция или даже сам автомобиль. Именно эта инфраструктура позволит GM конкурировать в индустрии, в которой все больше правят программные продукты, и предоставлять своим клиентам все высокотехнологичные преимущества, которые им необходимы, от экранов с высоким разрешением до потрясающих функций безопасности.
🔗 Концерн General Motors подарит всем своим новым автомобилям душу (цифровую оболочку)
Сейчас компания разрабатывает новую «цифровую нервную систему», которая поддерживает автообновление ПО и обработку до 4.5 ТБ данных в час Фото прототипа Cadill...
Новая «электронная платформа» — вычислительная сеть, которая будет работать на подавляющем большинстве автомобилей компании и обеспечит работу их многочисленных цифровых систем. Она столь же важна для будущего автопроизводителя, как и любая отдельная функция или даже сам автомобиль. Именно эта инфраструктура позволит GM конкурировать в индустрии, в которой все больше правят программные продукты, и предоставлять своим клиентам все высокотехнологичные преимущества, которые им необходимы, от экранов с высоким разрешением до потрясающих функций безопасности.
🔗 Концерн General Motors подарит всем своим новым автомобилям душу (цифровую оболочку)
Сейчас компания разрабатывает новую «цифровую нервную систему», которая поддерживает автообновление ПО и обработку до 4.5 ТБ данных в час Фото прототипа Cadill...
Хабр
Концерн General Motors подарит всем своим новым автомобилям душу (цифровую оболочку)
Сейчас компания разрабатывает новую «цифровую нервную систему», которая поддерживает автообновление ПО и обработку до 4.5 ТБ данных в час Фото прототипа Cadillac CT5 2020 от GM Новая...
День открытых дверей профессионального онлайн-курса «Data Engineer» пройдёт 27 мая, в 20.00 (мск). Записаться на вебинар вы сможете по этой ссылке: https://otus.pw/FolB/
Во время обучения Data Engineering вы будете создавать работающий продукт, решать прикладные задачи. И больше 20 работодателей, компаний-партнеров этого курса, уже ждут на собеседования выпускников. Проверьте, готовы ли вы учиться на курсе: сдайте вступительный тест https://otus.pw/qubP/
На этом курсе для разработчиков, админов и даже девопсов собраны лучшие практики по приготовлению данных с использованием современных инструментов, от загрузки до доступа. Если слова Hadoop, MapReduce, Spark для вас не пустой звук – это ваш курс. Кстати, «Отус онлайн-образование» имеет образовательную лицензию и предоставляет необходимые документы для налогового вычета.
Делиться с вами своей экспертизой будет целая команда практиков и экспертов своего дела. Среди которых и Артемий Козырь (Data Engineer, СИБУР) - ведущий вебинара, которому вы лично сможете задать все вопросы по курсу и программе.
Готовьте вопросы, регистрируйтесь – и приходите за подробностями!
🔗 Курс по Data Engineering. Запишитесь на курс по организации и предобработке данных
Мы выпускаем после наших курсов крутых специалистов по Data Engineering. Уникальное обучение организации и предобработке данных, с возможностью трудоустройства
Во время обучения Data Engineering вы будете создавать работающий продукт, решать прикладные задачи. И больше 20 работодателей, компаний-партнеров этого курса, уже ждут на собеседования выпускников. Проверьте, готовы ли вы учиться на курсе: сдайте вступительный тест https://otus.pw/qubP/
На этом курсе для разработчиков, админов и даже девопсов собраны лучшие практики по приготовлению данных с использованием современных инструментов, от загрузки до доступа. Если слова Hadoop, MapReduce, Spark для вас не пустой звук – это ваш курс. Кстати, «Отус онлайн-образование» имеет образовательную лицензию и предоставляет необходимые документы для налогового вычета.
Делиться с вами своей экспертизой будет целая команда практиков и экспертов своего дела. Среди которых и Артемий Козырь (Data Engineer, СИБУР) - ведущий вебинара, которому вы лично сможете задать все вопросы по курсу и программе.
Готовьте вопросы, регистрируйтесь – и приходите за подробностями!
🔗 Курс по Data Engineering. Запишитесь на курс по организации и предобработке данных
Мы выпускаем после наших курсов крутых специалистов по Data Engineering. Уникальное обучение организации и предобработке данных, с возможностью трудоустройства
Otus
Курс по Data Engineering. Запишитесь на курс по организации и предобработке данных
Мы выпускаем после наших курсов крутых специалистов по Data Engineering. Уникальное обучение организации и предобработке данных, с возможностью трудоустройства
The Thin Line Between Parasites and Mutualists
🔗 The Thin Line Between Parasites and Mutualists
How agent-based simulations can be used to understand the evolution from mutualism to parasitism and vice versa
🔗 The Thin Line Between Parasites and Mutualists
How agent-based simulations can be used to understand the evolution from mutualism to parasitism and vice versa
Towards Data Science
The Thin Line Between Parasites and Mutualists
How agent-based simulations can be used to understand the evolution from mutualism to parasitism and vice versa
Turning your Mobile Phone Camera into an Object Detector (on your own!)
🔗 Turning your Mobile Phone Camera into an Object Detector (on your own!)
It’s time to unlock the potential of your camera!
🔗 Turning your Mobile Phone Camera into an Object Detector (on your own!)
It’s time to unlock the potential of your camera!
Towards Data Science
Turning your Mobile Phone Camera into an Object Detector (on your own!)
It’s time to unlock the potential of your camera!
🎥 Adopting Machine Learning at Scale
👁 1 раз ⏳ 1548 сек.
👁 1 раз ⏳ 1548 сек.
This real-world use case presents how Rabobank applies Machine Learning for Fraud Detection, as well as how Machine Learning can be adopted across the organization.
Speaker: Jan W Veldsink, Master in the art of AI at Nyenrode, Rabobank, and Grio.
Event: Machine Learning School in Seville, Spain, 2019.
Vk
Adopting Machine Learning at Scale
This real-world use case presents how Rabobank applies Machine Learning for Fraud Detection, as well as how Machine Learning can be adopted across the organization.
Speaker: Jan W Veldsink, Master in the art of AI at Nyenrode, Rabobank, and Grio.
Event:…
Speaker: Jan W Veldsink, Master in the art of AI at Nyenrode, Rabobank, and Grio.
Event:…
Estimators, Loss Functions, Optimizers —Core of ML Algorithms
🔗 Estimators, Loss Functions, Optimizers —Core of ML Algorithms
In order to understand how a machine learning algorithm learns from data to predict an outcome, it is essential to understand the…
🔗 Estimators, Loss Functions, Optimizers —Core of ML Algorithms
In order to understand how a machine learning algorithm learns from data to predict an outcome, it is essential to understand the…
Towards Data Science
Estimators, Loss Functions, Optimizers —Core of ML Algorithms
In order to understand how a machine learning algorithm learns from data to predict an outcome, it is essential to understand the…
🎥 Machine Learning Tutorial Chap 3| Part-1 Simple Linear Regression | GreyAtom
👁 1 раз ⏳ 1975 сек.
👁 1 раз ⏳ 1975 сек.
Welcome to the #DataScienceFridays Rohit Ghosh, a deep learning scientist, and an Instructor at GreyAtom will take us through Simple Linear Regression in machine learning through an introduction series.
Simple Linear Regression is a machine learning algorithm based on supervised learning where the regression model uses independent variables to predict the outcome of a dependent variable. It is mostly used for finding out the relationship between variables and forecasting.
Study Simple Linear Regression i
Vk
Machine Learning Tutorial Chap 3| Part-1 Simple Linear Regression | GreyAtom
Welcome to the #DataScienceFridays Rohit Ghosh, a deep learning scientist, and an Instructor at GreyAtom will take us through Simple Linear Regression in machine learning through an introduction series.
Simple Linear Regression is a machine learning algorithm…
Simple Linear Regression is a machine learning algorithm…
🎥 [Uber Seattle] Horovod: Distributed Deep Learning on Spark
👁 1 раз ⏳ 1350 сек.
👁 1 раз ⏳ 1350 сек.
During this April 2019 meetup, Uber engineer Travis Addair introduces the concepts that make Horovod work, and walks through how to make use of Horovod on Spark to add distributed training to machine learning pipelines. Horovod is a distributed training framework for TensorFlow, PyTorch, Keras, and MXNet. Scaling to hundreds of GPUs, Horovod can reduce training time from hours to minutes with just a handful of lines added to existing single-GPU training processes.
Vk
[Uber Seattle] Horovod: Distributed Deep Learning on Spark
During this April 2019 meetup, Uber engineer Travis Addair introduces the concepts that make Horovod work, and walks through how to make use of Horovod on Spark to add distributed training to machine learning pipelines. Horovod is a distributed training framework…
Text Classification Algorithms: A Survey
https://medium.com/text-classification-algorithms/text-classification-algorithms-a-survey-a215b7ab7e2d
🔗 Text Classification Algorithms: A Survey
Text feature extraction and pre-processing for classification algorithms are very significant. In this section, we start to talk about text cleaning since most of the documents contain a lot of…
https://medium.com/text-classification-algorithms/text-classification-algorithms-a-survey-a215b7ab7e2d
🔗 Text Classification Algorithms: A Survey
Text feature extraction and pre-processing for classification algorithms are very significant. In this section, we start to talk about text cleaning since most of the documents contain a lot of…
Medium
Text Classification Algorithms: A Survey
Text feature extraction and pre-processing for classification algorithms are very significant. In this section, we start to talk about text cleaning since most of the documents contain a lot of…
Data Demystified — DIKW model
🔗 Data Demystified — DIKW model
A data scientist is a person who is better at statistics than any software engineer and better at software engineering than any…
🔗 Data Demystified — DIKW model
A data scientist is a person who is better at statistics than any software engineer and better at software engineering than any…
Towards Data Science
Data Demystified — DIKW model
A data scientist is a person who is better at statistics than any software engineer and better at software engineering than any…